Visual-Inertial Sensor Fusion: Localization, Mapping and Sensor-to-Sensor Self-calibration

Visual and inertial sensors, in combination, are able to provide accurate motion estimates and are well suited for use in many robot navigation tasks. However, correct data fusion, and hence overall performance, depends on careful calibration of the rigid body transform between the sensors. Obtaining this calibration information is typically difficult and time-consuming, and normally requires additional equipment. In this paper we describe an algorithm, based on the unscented Kalman filter, for self-calibration of the transform between a camera and an inertial measurement unit (IMU). Our formulation rests on a differential geometric analysis of the observability of the camera—IMU system; this analysis shows that the sensor-to-sensor transform, the IMU gyroscope and accelerometer biases, the local gravity vector, and the metric scene structure can be recovered from camera and IMU measurements alone. While calibrating the transform we simultaneously localize the IMU and build a map of the surroundings, all without additional hardware or prior knowledge about the environment in which a robot is operating. We present results from simulation studies and from experiments with a monocular camera and a low-cost IMU, which demonstrate accurate estimation of both the calibration parameters and the local scene structure.

[1]  Stephen M. Rock,et al.  Relative position sensing by fusing monocular vision and inertial rate sensors , 2003 .

[2]  C. A. Desoer,et al.  Nonlinear Systems Analysis , 1978 .

[3]  J.C.K. Chou,et al.  Quaternion kinematic and dynamic differential equations , 1992, IEEE Trans. Robotics Autom..

[4]  Bijoy K. Ghosh,et al.  Pose estimation using line-based dynamic vision and inertial sensors , 2003, IEEE Trans. Autom. Control..

[5]  C. Moog,et al.  Algebraic Methods for Nonlinear Control Systems , 2006 .

[6]  Sanjiv Singh,et al.  Online Motion Estimation from Image and Inertial Measurements , 2003 .

[7]  Tom Drummond,et al.  Scalable Monocular SLAM , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[8]  F. Markley,et al.  Unscented Filtering for Spacecraft Attitude Estimation , 2003 .

[9]  Olivier Stasse,et al.  MonoSLAM: Real-Time Single Camera SLAM , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Michel Verhaegen,et al.  Filtering and System Identification: Frontmatter , 2007 .

[11]  Jay A. Farrell,et al.  Aided Navigation: GPS with High Rate Sensors , 2008 .

[12]  Sanjit K. Mitra,et al.  Using saddle points for subpixel feature detection in camera calibration targets , 2002, Asia-Pacific Conference on Circuits and Systems.

[13]  Frank L. Lewis,et al.  Aircraft Control and Simulation , 1992 .

[14]  Anahí Gallardo Velázquez,et al.  Conference , 1969, Journal of Neuroscience Methods.

[15]  R. Siegwart,et al.  Observability Properties and Optimal Trajectories for On-line Odometry Self-Calibration , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[16]  Stergios I. Roumeliotis,et al.  A Multi-State Constraint Kalman Filter for Vision-aided Inertial Navigation , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[17]  Alberto Isidori,et al.  Nonlinear control systems: an introduction (2nd ed.) , 1989 .

[18]  Sanjiv Singh,et al.  Motion Estimation from Image and Inertial Measurements , 2004, Int. J. Robotics Res..

[19]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[20]  A. Krener,et al.  Nonlinear controllability and observability , 1977 .

[21]  Stefano Soatto,et al.  Structure from Motion Causally Integrated Over Time , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[23]  G. Klein,et al.  Parallel Tracking and Mapping for Small AR Workspaces , 2007, 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality.

[24]  S. Sastry Nonlinear Systems: Analysis, Stability, and Control , 1999 .

[25]  Eric Foxlin,et al.  Generalized architecture for simultaneous localization, auto-calibration, and map-building , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[26]  A. Isidori Nonlinear Control Systems , 1985 .

[27]  Markus Vincze,et al.  Simultaneous Motion and Structure Estimation by Fusion of Inertial and Vision Data , 2007, Int. J. Robotics Res..

[28]  J. Mcneff The global positioning system , 2002 .

[29]  Rudolph van der Merwe,et al.  Sigma-Point Kalman Filters for Integrated Navigation , 2004 .

[30]  Roland Siegwart,et al.  Automatic self-calibration of a vision system during robot motion , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[31]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[32]  Jorge Dias,et al.  Relative Pose Calibration Between Visual and Inertial Sensors , 2007, Int. J. Robotics Res..

[33]  N E Manos,et al.  Stochastic Models , 1960, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..

[34]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using unit quaternions , 1987 .

[35]  Stergios I. Roumeliotis,et al.  IMU-Camera Calibration: Observability Analysis , 2007 .

[36]  John Weston,et al.  Strapdown Inertial Navigation Technology , 1997 .

[37]  Stergios I. Roumeliotis,et al.  A Kalman Filter-Based Algorithm for IMU-Camera Calibration: Observability Analysis and Performance Evaluation , 2008, IEEE Transactions on Robotics.

[38]  Kenneth R Britting,et al.  Inertial navigation systems analysis , 1971 .

[39]  J. Farrell,et al.  The global positioning system and inertial navigation , 1999 .

[40]  Thomas B. Schön,et al.  Relative pose calibration of a spherical camera and an IMU , 2008, 2008 7th IEEE/ACM International Symposium on Mixed and Augmented Reality.

[41]  Roland Siegwart,et al.  Theoretical Results on On-line Sensor Self-Calibration , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[42]  Gene H. Golub,et al.  Matrix computations , 1983 .

[43]  Gaurav S. Sukhatme,et al.  Combined Visual and Inertial Navigation for an Unmanned Aerial Vehicle , 2008, FSR.

[44]  Stergios I. Roumeliotis,et al.  Vision-Aided Inertial Navigation for Spacecraft Entry, Descent, and Landing , 2009, IEEE Transactions on Robotics.

[45]  Jack B. Kuipers,et al.  Quaternions and Rotation Sequences: A Primer with Applications to Orbits, Aerospace and Virtual Reality , 2002 .

[46]  Joseph J. LaViola,et al.  On Kalman Filtering With Nonlinear Equality Constraints , 2007, IEEE Transactions on Signal Processing.

[47]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[48]  V. Verdult,et al.  Filtering and System Identification: A Least Squares Approach , 2007 .

[49]  E. Kraft,et al.  A quaternion-based unscented Kalman filter for orientation tracking , 2003, Sixth International Conference of Information Fusion, 2003. Proceedings of the.

[50]  Charles Birkbeck,et al.  Institution of Electrical Engineers , 2016, Nature.

[51]  A. Vedaldi,et al.  Inertial Structure From Motion with Autocalibration , 2007 .

[52]  Andrea Vedaldi,et al.  Vlfeat: an open and portable library of computer vision algorithms , 2010, ACM Multimedia.

[53]  Javier Civera,et al.  Inverse Depth Parametrization for Monocular SLAM , 2008, IEEE Transactions on Robotics.

[54]  John Weston,et al.  Strapdown Inertial Navigation Technology, Second Edition , 2005 .

[55]  Simon J. Julier,et al.  The scaled unscented transformation , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[56]  Peter S. Maybeck,et al.  Stochastic Models, Estimation And Control , 2012 .

[57]  I. Bar-Itzhack,et al.  Observability analysis of piece-wise constant systems. I. Theory , 1992 .

[58]  A. Pinz,et al.  Calibration of Hybrid Vision / Inertial Tracking Systems * , 2005 .

[59]  S. Shankar Sastry,et al.  An Invitation to 3-D Vision , 2004 .

[60]  Javier Civera,et al.  Unified Inverse Depth Parametrization for Monocular SLAM , 2006, Robotics: Science and Systems.

[61]  A. B. Chatfield Fundamentals of high accuracy inertial navigation , 1997 .

[62]  C. Chang,et al.  On observability and unbiased estimation of nonlinear systems , 1982 .

[63]  W. David Woods,et al.  How Apollo Flew to the Moon , 2011 .