Ranking alternatives on the basis of a dominance intensity measure and fuzzy logic

This paper introduces a new ranking method based on an additive multiattribute utility function for multicriteria decision-making problems with imprecise information. Alternative performances are described under uncertainty by uniform distributions, while classes of utility functions are used in each attribute and weights representing the relative importance of criteria are triangular (or trapezoidal) fuzzy numbers.

[1]  John C. Butler,et al.  A Multiattribute Utility Analysis of Alternatives for the Disposition of Surplus Weapons-Grade Plutonium , 1998, Oper. Res..

[2]  T. Stewart Robustness of Additive Value Function Methods in MCDM , 1996 .

[3]  P. Farquhar State of the Art—Utility Assessment Methods , 1984 .

[4]  K. S. Park,et al.  Mathematical programming models for characterizing dominance and potential optimality when multicriteria alternative values and weights are simultaneously incomplete , 2004, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[5]  Lucien Duckstein,et al.  Fuzzy Rule-Based Modeling with Applications to Geophysical, Biological and Engineering Systems , 1995 .

[6]  Alfonso Mateos,et al.  Dominance, potential optimality and alternative ranking in imprecise multi-attribute decision making , 2007, J. Oper. Res. Soc..

[7]  Jacques L. Koko,et al.  The Art and Science of Negotiation , 2009 .

[8]  D. A. Seaver,et al.  A comparison of weight approximation techniques in multiattribute utility decision making , 1981 .

[9]  Sixto Ríos Insua,et al.  A generic multi-attribute analysis system , 2006 .

[10]  Soung Hie Kim,et al.  Establishing dominance and potential optimality in multi-criteria analysis with imprecise weight and value , 2001, Comput. Oper. Res..

[11]  Antonio Jiménez-Martín,et al.  A Trapezoidal Fuzzy Numbers-Based Approach for Aggregating Group Preferences and Ranking Decision Alternatives in MCDM , 2009, EMO.

[12]  Luis C. Dias,et al.  Simple procedures of choice in multicriteria problems without precise information about the alternatives' values , 2010, Comput. Oper. Res..

[13]  Didier Dubois,et al.  Fuzzy sets and systems ' . Theory and applications , 2007 .

[14]  John C. Butler,et al.  A PROPOSED METHODOLOGY FOR THE ANALYSIS AND SELECTION OF ALTERNATIVES FOR THE DISPOSITION OF SURPLUS PLUTONIUM , 1996 .

[15]  Andrew P. Sage,et al.  ARIADNE: A knowledge-based interactive system for planning and decision support , 1984, IEEE Transactions on Systems, Man, and Cybernetics.

[16]  A Mateos,et al.  Postoptimal analysis in a multi-attribute decision model for restoring contaminated aquatic ecosystems , 2001, J. Oper. Res. Soc..

[17]  John C. Butler,et al.  Evaluation of Alternatives for the Disposition of Surplus Weapons-usable Plutonium , 1998 .

[18]  Alfonso Mateos,et al.  Monte Carlo Simulation Techniques in a Decision Support System for Group Decision Making , 2005 .

[19]  Byeong Seok Ahn,et al.  Extending Malakooti's model for ranking multicriteria alternatives with preference strength and partial information , 2003, IEEE Trans. Syst. Man Cybern. Part A.

[20]  Alfonso Mateos,et al.  MOIRA: A decision support system for decision making on aquatic ecosystems contaminated by radioactive fallout , 2000, Ann. Oper. Res..

[21]  Antonio Jiménez-Martín,et al.  Ranking Methods Based on Dominance Measures Accounting for Imprecision , 2009, ADT.

[22]  Byeong Seok Ahn,et al.  Comparing methods for multiattribute decision making with ordinal weights , 2008, Comput. Oper. Res..

[23]  Behnam Malakooti,et al.  Ranking and screening multiple criteria alternatives with partial information and use of ordinal and cardinal strength of preferences , 2000, IEEE Trans. Syst. Man Cybern. Part A.

[24]  J. Puertoa,et al.  Decision criteria with partial information , 2000 .

[25]  Soung Hie Kim,et al.  Dominance, potential optimality, imprecise information, and hierarchical structure in multi-criteria analysis , 2002, Comput. Oper. Res..

[26]  Bruce E. Barrett,et al.  Decision quality using ranked attribute weights , 1996 .