With probability one, a random oracle separates PSPACE from the polynomial-time hierarchy

Abstract We consider how much error a fixed depth Boolean circuit must make in computing the parity function. We show that with an exponential bound of the form exp( n λ ) on the size of the circuits, they make a 50% error on all possible inputs, asymptotically and uniformly. As a consequence, we show that a random oracle set A separates PSPACE from the entire polynomial-time hierarchy with probability one.

[1]  Johan Håstad,et al.  Almost optimal lower bounds for small depth circuits , 1986, STOC '86.

[2]  Jin-Yi Cai,et al.  The Boolean Hierarchy: Hardware over NP , 1986, SCT.

[3]  A. Yao Separating the polynomial-time hierarchy by oracles , 1985 .

[4]  Michael Sipser,et al.  Borel sets and circuit complexity , 1983, STOC.

[5]  Miklós Ajtai,et al.  ∑11-Formulae on finite structures , 1983, Ann. Pure Appl. Log..

[6]  Michael Sipser,et al.  Parity, circuits, and the polynomial-time hierarchy , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[7]  John Gill,et al.  Relative to a Random Oracle A, PA != NPA != co-NPA with Probability 1 , 1981, SIAM J. Comput..

[8]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[9]  Theodore P. Baker,et al.  A second step toward the polynomial hierarchy , 1976, 17th Annual Symposium on Foundations of Computer Science (sfcs 1976).

[10]  Larry J. Stockmeyer,et al.  The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[11]  A. K. Chandra,et al.  Alternation , 1976, 17th Annual Symposium on Foundations of Computer Science (sfcs 1976).

[12]  R. Solovay,et al.  Relativizations of the $\mathcal{P} = ?\mathcal{NP}$ Question , 1975 .

[13]  John Gill,et al.  Relativizations of the P =? NP Question , 1975, SIAM J. Comput..

[14]  Albert R. Meyer,et al.  The Equivalence Problem for Regular Expressions with Squaring Requires Exponential Space , 1972, SWAT.