With probability one, a random oracle separates PSPACE from the polynomial-time hierarchy
暂无分享,去创建一个
[1] Johan Håstad,et al. Almost optimal lower bounds for small depth circuits , 1986, STOC '86.
[2] Jin-Yi Cai,et al. The Boolean Hierarchy: Hardware over NP , 1986, SCT.
[3] A. Yao. Separating the polynomial-time hierarchy by oracles , 1985 .
[4] Michael Sipser,et al. Borel sets and circuit complexity , 1983, STOC.
[5] Miklós Ajtai,et al. ∑11-Formulae on finite structures , 1983, Ann. Pure Appl. Log..
[6] Michael Sipser,et al. Parity, circuits, and the polynomial-time hierarchy , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).
[7] John Gill,et al. Relative to a Random Oracle A, PA != NPA != co-NPA with Probability 1 , 1981, SIAM J. Comput..
[8] Jeffrey D. Ullman,et al. Introduction to Automata Theory, Languages and Computation , 1979 .
[9] Theodore P. Baker,et al. A second step toward the polynomial hierarchy , 1976, 17th Annual Symposium on Foundations of Computer Science (sfcs 1976).
[10] Larry J. Stockmeyer,et al. The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..
[11] A. K. Chandra,et al. Alternation , 1976, 17th Annual Symposium on Foundations of Computer Science (sfcs 1976).
[12] R. Solovay,et al. Relativizations of the $\mathcal{P} = ?\mathcal{NP}$ Question , 1975 .
[13] John Gill,et al. Relativizations of the P =? NP Question , 1975, SIAM J. Comput..
[14] Albert R. Meyer,et al. The Equivalence Problem for Regular Expressions with Squaring Requires Exponential Space , 1972, SWAT.