Output feedback tracking control of robot manipulators with model uncertainty via adaptive fuzzy logic

Many robot controllers require not only joint position measurements but also joint velocity measurements; however, most robotic systems are only equipped with joint position measurement devices. In this paper, a new output feedback tracking control approach is developed for the robot manipulators with model uncertainty. The approach suggested herein does not require velocity measurements and employs the adaptive fuzzy logic. The adaptive fuzzy logic allows us to approximate uncertain and nonlinear robot dynamics. Only one fuzzy system is used to implement the observer-controller structure of the output feedback robot system. It is shown in a rigorous manner that all the signals in a closed loop composed of a robot, an observer, and a controller are uniformly ultimately bounded. Finally, computer simulation results on three-link robot manipulators are presented to show the results which indicate good position tracking performance and robustness against payload uncertainty and external disturbances.

[1]  Bor-Sen Chen,et al.  Robust tracking designs for both holonomic and nonholonomic constrained mechanical systems: adaptive fuzzy approach , 2000, IEEE Trans. Fuzzy Syst..

[2]  Suguru Arimoto,et al.  Stability and robustness of PID feedback control for robot manipulators of sensory capability , 1984 .

[3]  Jean-Jacques E. Slotine,et al.  Tracking control of non-linear systems using sliding surfaces with application to robot manipulators , 1983 .

[4]  Jean-Jacques E. Slotine,et al.  Adaptive manipulator control: A case study , 1988 .

[5]  Kevin M. Passino,et al.  Stable adaptive control using fuzzy systems and neural networks , 1996, IEEE Trans. Fuzzy Syst..

[6]  Zhi Liu,et al.  Fuzzy neural network quadratic stabilization output feedback control for biped robots via H/sub /spl infin// approach. , 2003, IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society.

[7]  K. Narendra,et al.  A new adaptive law for robust adaptation without persistent excitation , 1987 .

[8]  G. Bartolini,et al.  Variable structure systems nonlinear in the control law , 1985 .

[9]  Ser Yong Lim,et al.  Re-examining the Nicosia-Tomei robot observer-controller from a backstepping perspective , 1996, IEEE Trans. Control. Syst. Technol..

[10]  Wen-Hong Zhu,et al.  A variable structure robot control algorithm with an observer , 1992, IEEE Trans. Robotics Autom..

[11]  Li-Xin Wang,et al.  Stable adaptive fuzzy control of nonlinear systems , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[12]  Juan Luis Castro,et al.  Fuzzy systems with defuzzification are universal approximators , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[13]  K. Narendra,et al.  A New Adaptive Law for Robust Adaptation without Persistent Excitation , 1986, 1986 American Control Conference.

[14]  Yih-Guang Leu,et al.  Observer-based adaptive fuzzy-neural control for unknown nonlinear dynamical systems , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[15]  Myung Jin Chung,et al.  A robust fuzzy logic controller for robot manipulators with uncertainties , 1997, IEEE Trans. Syst. Man Cybern. Part B.

[16]  Jun Hu,et al.  Adaptive position/force control of robot manipulators without velocity measurements: theory and experimentation , 1997, IEEE Trans. Syst. Man Cybern. Part B.

[17]  Wu-Sheng Lu,et al.  A reduced-order adaptive velocity observer for manipulator control , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[18]  Jean-Jacques E. Slotine,et al.  Robot analysis and control , 1988, Autom..

[19]  Dr. Rainer Palm,et al.  Model Based Fuzzy Control , 1997, Springer Berlin Heidelberg.

[20]  Bor-Sen Chen,et al.  Robust tracking enhancement of robot systems including motor dynamics: a fuzzy-based dynamic game approach , 1998, IEEE Trans. Fuzzy Syst..

[21]  Bor-Sen Chen,et al.  H∞ tracking design of uncertain nonlinear SISO systems: adaptive fuzzy approach , 1996, IEEE Trans. Fuzzy Syst..

[22]  C. C. Wit,et al.  Adaptive control of robot manipulators via velocity estimated feedback , 1992 .

[23]  Li-Xin Wang,et al.  A Course In Fuzzy Systems and Control , 1996 .

[24]  Marios M. Polycarpou,et al.  Neural network based fault detection in robotic manipulators , 1998, IEEE Trans. Robotics Autom..

[25]  Petros A. Ioannou,et al.  Adaptive Systems with Reduced Models , 1983 .

[26]  J. J. Slotine,et al.  Tracking control of non-linear systems using sliding surfaces with application to robot manipulators , 1983, 1983 American Control Conference.

[27]  Frank L. Lewis,et al.  Neural network output feedback control of robot manipulators , 1999, IEEE Trans. Robotics Autom..

[28]  Kevin M. Passino,et al.  Stable multi-input multi-output adaptive fuzzy/neural control , 1999, IEEE Trans. Fuzzy Syst..

[29]  Mark W. Spong,et al.  Robot dynamics and control , 1989 .

[30]  Frank L. Lewis,et al.  Control of Robot Manipulators , 1993 .

[31]  S. Nicosia,et al.  Robot control by using only joint position measurements , 1990 .

[32]  Mansour Eslami,et al.  Robust adaptive controller designs for robot manipulator systems , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[33]  C. C. Wit,et al.  Robot control via robust estimated state feedback , 1991 .