High-efficiency GaInP∕GaAs∕InGaAs triple-junction solar cells grown inverted with a metamorphic bottom junction
暂无分享,去创建一个
Sarah R. Kurtz | William E. McMahon | John F. Geisz | Daniel J. Friedman | Tom Moriarty | M. W. Wanlass | Jerry M. Olson | Anna Duda | James Scott Ward | S. Kurtz | T. Moriarty | D. Friedman | M. Wanlass | W. McMahon | J. Kiehl | J. Ward | J. Olson | J. Geisz | A. Duda | J. Kiehl
[1] Wilhelm Warta,et al. Solar cell efficiency tables (version 29) , 2007 .
[2] S. Kurtz,et al. Capacitance-spectroscopy identification of a key defect in N-degraded GalnNAs solar cells , 2005 .
[3] M. Wanlass,et al. Characterization survey of GaxIn1−xAs/InAsyP1−y double heterostructures and InAsyP1−y multilayers grown on InP , 2004 .
[4] R. Goldman,et al. Effects of GaAs substrate misorientation on strain relaxation in InxGa1−xAs films and multilayers , 1998 .
[5] D. Dunstan,et al. Comparison of the crystalline quality of step-graded and continuously graded InGaAs buffer layers , 1996 .
[6] E. J. Haverkamp,et al. High rate epitaxial lift-off of InGaP films from GaAs substrates , 2000 .
[7] Real-time stress evolution during growth of InxAl1−xAs/GaAs metamorphic buffer layers , 2004 .
[8] Sarah R. Kurtz,et al. A 27.3 % efficient Ga0.5 In0.5 P/GaAs tandem solar cell , 1990 .
[9] D. Law,et al. 40% efficient metamorphic GaInP∕GaInAs∕Ge multijunction solar cells , 2007 .