Efficient exon skipping by base-editor-mediated abrogation of exonic splicing enhancers.

[1]  Yan Song,et al.  Therapeutic Exon Skipping Through a CRISPR-Guided Cytidine Deaminase Rescues Dystrophic Cardiomyopathy in Vivo , 2021, Circulation.

[2]  E. Mercuri,et al.  Duchenne muscular dystrophy , 2021, Nature Reviews Disease Primers.

[3]  K. Raczyńska,et al.  U7 snRNA: A tool for gene therapy , 2021, The journal of gene medicine.

[4]  Thomas M. Keane,et al.  Twelve years of SAMtools and BCFtools , 2020, GigaScience.

[5]  J. Valcárcel,et al.  Mutations primarily alter the inclusion of alternatively spliced exons , 2020, bioRxiv.

[6]  L. Lai,et al.  Large-Fragment Deletions Induced by Cas9 Cleavage while Not in the BEs System , 2020, Molecular therapy. Nucleic acids.

[7]  Benjamin P. Kleinstiver,et al.  Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants , 2020, Science.

[8]  E. Mercuri,et al.  Increased dystrophin production with golodirsen in patients with Duchenne muscular dystrophy , 2020, Neurology.

[9]  S. Mirarab,et al.  Sequence Analysis , 2020, Encyclopedia of Bioinformatics and Computational Biology.

[10]  Nicole V. DelRosso,et al.  Accurate quantification of astrocyte and neurotransmitter fluorescence dynamics for single-cell and population-level physiology , 2019, Nature Neuroscience.

[11]  Hui Yang,et al.  Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis , 2019, Nature.

[12]  J. Mendell,et al.  Long-term treatment with eteplirsen in nonambulatory patients with Duchenne muscular dystrophy , 2019, Medicine.

[13]  Martin J. Aryee,et al.  Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors , 2019, Nature.

[14]  Matthew C. Canver,et al.  CRISPResso2 provides accurate and rapid genome editing sequence analysis , 2019, Nature Biotechnology.

[15]  Charles A. Gersbach,et al.  Long-term Evaluation of AAV-CRISPR Genome Editing for Duchenne Muscular Dystrophy , 2018, Nature Medicine.

[16]  Jia Li,et al.  Genetic Modulation of RNA Splicing with a CRISPR-Guided Cytidine Deaminase. , 2018, Molecular cell.

[17]  Alan Luu,et al.  CRISPR-SKIP: programmable gene splicing with single base editors , 2018, Genome Biology.

[18]  A. Bradley,et al.  Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements , 2018, Nature Biotechnology.

[19]  Gregory McAllister,et al.  p53 inhibits CRISPR–Cas9 engineering in human pluripotent stem cells , 2018, Nature Medicine.

[20]  Jussi Taipale,et al.  CRISPR–Cas9 genome editing induces a p53-mediated DNA damage response , 2018, Nature Medicine.

[21]  David R. Liu,et al.  Evolved Cas9 variants with broad PAM compatibility and high DNA specificity , 2018, Nature.

[22]  Yanxin Li,et al.  Hi-TOM: a platform for high-throughput tracking of mutations induced by CRISPR/Cas systems , 2017, Science China Life Sciences.

[23]  Lothar Hennighausen,et al.  CRISPR/Cas9 targeting events cause complex deletions and insertions at 17 sites in the mouse genome , 2017, Nature Communications.

[24]  Yan Song,et al.  Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells , 2016, Nature Methods.

[25]  Atsushi Nakano,et al.  A Single CRISPR-Cas9 Deletion Strategy that Targets the Majority of DMD Patients Restores Dystrophin Function in hiPSC-Derived Muscle Cells. , 2016, Cell stem cell.

[26]  L. Shkreta,et al.  Defective control of pre–messenger RNA splicing in human disease , 2016, The Journal of cell biology.

[27]  J. Joung,et al.  Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition , 2015, Nature Biotechnology.

[28]  I. Karakikes,et al.  Human induced pluripotent stem cell-derived cardiomyocytes: insights into molecular, cellular, and functional phenotypes. , 2015, Circulation research.

[29]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[30]  H. Ruohola-Baker,et al.  Dystrophin-deficient cardiomyocytes derived from human urine: new biologic reagents for drug discovery. , 2014, Stem cell research.

[31]  J. Mendell,et al.  Eteplirsen for the treatment of Duchenne muscular dystrophy , 2013, Annals of neurology.

[32]  R. Kohli,et al.  Nucleic acid determinants for selective deamination of DNA over RNA by activation-induced deaminase , 2013, Proceedings of the National Academy of Sciences.

[33]  T. Tuschl,et al.  A comprehensive analysis of AID's effects on the transcriptome and methylome of activated B cells , 2013, Nature Immunology.

[34]  A. Sivachenko,et al.  Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples , 2013, Nature Biotechnology.

[35]  Sean P. Palecek,et al.  Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling , 2012, Proceedings of the National Academy of Sciences.

[36]  S. Hammond,et al.  Induction of a regenerative microenvironment in skeletal muscle is sufficient to induce embryonal rhabdomyosarcoma in p53‐deficient mice , 2012, The Journal of pathology.

[37]  Jingyue Ju,et al.  Quantitative evaluation of all hexamers as exonic splicing elements. , 2011, Genome research.

[38]  G. van Ommen,et al.  Systemic administration of PRO051 in Duchenne's muscular dystrophy. , 2011, The New England journal of medicine.

[39]  M. DePristo,et al.  A framework for variation discovery and genotyping using next-generation DNA sequencing data , 2011, Nature Genetics.

[40]  D. Cacchiarelli,et al.  miR‐31 modulates dystrophin expression: new implications for Duchenne muscular dystrophy therapy , 2011, EMBO reports.

[41]  G. van Ommen,et al.  Theoretic applicability of antisense‐mediated exon skipping for Duchenne muscular dystrophy mutations , 2009, Human mutation.

[42]  C. Burge,et al.  Splicing regulation: from a parts list of regulatory elements to an integrated splicing code. , 2008, RNA.

[43]  Johan T den Dunnen,et al.  Local dystrophin restoration with antisense oligonucleotide PRO051. , 2007, The New England journal of medicine.

[44]  J. Chamberlain,et al.  Dystrophin‐deficient mdx mice display a reduced life span and are susceptible to spontaneous rhabdomyosarcoma , 2007, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[45]  G. van Ommen,et al.  Entries in the Leiden Duchenne muscular dystrophy mutation database: An overview of mutation types and paradoxical cases that confirm the reading‐frame rule , 2006, Muscle & nerve.

[46]  Luis Garcia,et al.  Rescue of Dystrophic Muscle Through U7 snRNA-Mediated Exon Skipping , 2004, Science.

[47]  Christopher B. Burge,et al.  RESCUE-ESE identifies candidate exonic splicing enhancers in vertebrate exons , 2004, Nucleic Acids Res..

[48]  E. Market,et al.  AID Mediates Hypermutation by Deaminating Single Stranded DNA , 2003, The Journal of experimental medicine.

[49]  F. Alt,et al.  Transcription-targeted DNA deamination by the AID antibody diversification enzyme , 2003, Nature.

[50]  M. Goodman,et al.  Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Phillip A Sharp,et al.  Predictive Identification of Exonic Splicing Enhancers in Human Genes , 2002, Science.

[52]  A. Krainer,et al.  Listening to silence and understanding nonsense: exonic mutations that affect splicing , 2002, Nature Reviews Genetics.

[53]  B. Blencowe Exonic splicing enhancers: mechanism of action, diversity and role in human genetic diseases. , 2000, Trends in biochemical sciences.

[54]  J. Nicklas,et al.  Mutations that alter RNA splicing of the human HPRT gene: a review of the spectrum. , 1998, Mutation research.

[55]  Karen S. Fernández,et al.  Mice lacking dystrophin or alpha sarcoglycan spontaneously develop embryonal rhabdomyosarcoma with cancer-associated p53 mutations and alternatively spliced or mutant Mdm2 transcripts. , 2010, The American journal of pathology.

[56]  G. van Ommen,et al.  Advances in Duchenne muscular dystrophy gene therapy , 2003, Nature reviews. Genetics.