High performance of Mn-doped CdSe quantum dot sensitized solar cells based on the vertical ZnO nanorod arrays

[1]  G. Cao,et al.  Investigation of the role of Mn dopant in CdS quantum dot sensitized solar cell. , 2016 .

[2]  D. Gamelin,et al.  Tuning Equilibrium Compositions in Colloidal Cd1-xMnxSe Nanocrystals Using Diffusion Doping and Cation Exchange. , 2016, ACS nano.

[3]  J. Bisquert,et al.  Amorphous TiO2 Buffer Layer Boosts Efficiency of Quantum Dot Sensitized Solar Cells to over 9 , 2015 .

[4]  Y. Dahnovsky,et al.  Optical spectra of CdMnSe of nano-ferro- and antiferro-magnets. , 2015, Physical chemistry chemical physics : PCCP.

[5]  Y. Dahnovsky,et al.  Magnetic effects in Mn‐doped CdSe nanocrystals , 2015 .

[6]  Aram Amassian,et al.  16.1% Efficient Hysteresis‐Free Mesostructured Perovskite Solar Cells Based on Synergistically Improved ZnO Nanorod Arrays , 2015 .

[7]  Y. Dahnovsky,et al.  Optical and Magnetic Properties of PbS Nanocrystals Doped by Manganese Impurities , 2015 .

[8]  G. Cao,et al.  Control of Nanostructures and Interfaces of Metal Oxide Semiconductors for Quantum-Dots-Sensitized Solar Cells. , 2015, The journal of physical chemistry letters.

[9]  M. Bonn,et al.  Boosting power conversion efficiencies of quantum-dot-sensitized solar cells beyond 8% by recombination control. , 2015, Journal of the American Chemical Society.

[10]  Christopher J Howe,et al.  A High Power-Density, Mediator-Free, Microfluidic Biophotovoltaic Device for Cyanobacterial Cells , 2014, Advanced energy materials.

[11]  Yong-Siou Chen,et al.  Role of Mn2+ in Doped Quantum Dot Solar Cell , 2014 .

[12]  G. Cao,et al.  A highly efficient (>6%) Cd1−xMnxSe quantum dot sensitized solar cell , 2014 .

[13]  H. Ghosh,et al.  Electron Trap to Electron Storage Center in Specially Aligned Mn-Doped CdSe d-Dot: A Step Forward in the Design of Higher Efficient Quantum-Dot Solar Cell. , 2014, The journal of physical chemistry letters.

[14]  Chun‐Sing Lee,et al.  Surface Engineering of ZnO Nanostructures for Semiconductor‐Sensitized Solar Cells , 2014, Advanced materials.

[15]  Jinke Tang,et al.  Pulsed laser deposition of Mn doped CdSe quantum dots for improved solar cell performance , 2014 .

[16]  E. Uchaker,et al.  Hierarchically structured ZnO nanorods-nanosheets for improved quantum-dot-sensitized solar cells. , 2014, ACS applied materials & interfaces.

[17]  M. Seol,et al.  Chemical Bath Deposition of Stoichiometric CdSe Quantum Dots for Efficient Quantum-Dot-Sensitized Solar Cell Application , 2014 .

[18]  Basile F. E. Curchod,et al.  Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. , 2014, Nature chemistry.

[19]  K. Prabakar,et al.  Improved photovoltaic performance of CdSe/CdS/PbS quantum dot sensitized ZnO nanorod array solar cell , 2014 .

[20]  K. Prabakar,et al.  Improved performance of CdS/CdSe quantum dot-sensitized solar cells using Mn-doped PbS quantum dots as a catalyst in the counter electrode , 2014 .

[21]  Illan J. Kramer,et al.  The architecture of colloidal quantum dot solar cells: materials to devices. , 2014, Chemical reviews.

[22]  Jihuai Wu,et al.  Efficient Mn-doped CdS quantum dot sensitized solar cells based on SnO2 microsphere photoelectrodes , 2014, Journal of Materials Science: Materials in Electronics.

[23]  Hiroshi Segawa,et al.  PbS-Quantum-Dot-Based Heterojunction Solar Cells Utilizing ZnO Nanowires for High External Quantum Efficiency in the Near-Infrared Region , 2013 .

[24]  P. Kamat Quantum Dot Solar Cells. The Next Big Thing in Photovoltaics. , 2013, The journal of physical chemistry letters.

[25]  N. Park,et al.  Quantum-Dot-Sensitized Solar Cell with Unprecedentedly High Photocurrent , 2013, Scientific Reports.

[26]  P. Kamat Boosting the efficiency of quantum dot sensitized solar cells through modulation of interfacial charge transfer. , 2012, Accounts of Chemical Research.

[27]  Prashant V Kamat,et al.  Mn-doped quantum dot sensitized solar cells: a strategy to boost efficiency over 5%. , 2012, Journal of the American Chemical Society.

[28]  Jin-Yun Liao,et al.  Dynamic study of highly efficient CdS/CdSe quantum dot-sensitized solar cells fabricated by electrodeposition. , 2011, ACS nano.

[29]  Jinwoo Lee,et al.  Highly Efficient and Durable Quantum Dot Sensitized ZnO Nanowire Solar Cell Using Noble-Metal-Free Counter Electrode , 2011 .

[30]  P. Kamat,et al.  Tracking the Adsorption and Electron Injection Rates of CdSe Quantum Dots on TiO2: Linked versus Direct Attachment , 2011 .

[31]  M. Seol,et al.  Novel nanowire array based highly efficient quantum dot sensitized solar cell. , 2010, Chemical communications.

[32]  Liduo Wang,et al.  Mg(OOCCH3)2 interface modification after sensitization to improve performance in quasi-solid dye-sensitized solar cells. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[33]  Jinsheng Zheng,et al.  Effect of surface etching on the efficiency of ZnO-based dye-sensitized solar cells. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[34]  J. Furdyna,et al.  Giant Zeeman splitting in nucleation-controlled doped CdSe:Mn2+ quantum nanoribbons. , 2010, Nature materials.

[35]  J. Bisquert,et al.  Improving the performance of colloidal quantum-dot-sensitized solar cells , 2009, Nanotechnology.

[36]  E. Sargent,et al.  Colloidal Quantum-Dot Photodetectors Exploiting Multiexciton Generation , 2009, Science.

[37]  James R. Durrant,et al.  Electron Injection Efficiency and Diffusion Length in Dye-Sensitized Solar Cells Derived from Incident Photon Conversion Efficiency Measurements , 2009 .

[38]  Monica Lira-Cantu,et al.  Vertically-aligned nanostructures of ZnO for excitonic solar cells: a review , 2009 .

[39]  Paul I. Archer,et al.  Mn2+‐Doped CdSe Quantum Dots: New Inorganic Materials for Spin‐Electronics and Spin‐Photonics , 2008 .

[40]  Larissa Levina,et al.  Thiols passivate recombination centers in colloidal quantum dots leading to enhanced photovoltaic device efficiency. , 2008, ACS nano.

[41]  Yongan Yang,et al.  On doping CdS/ZnS core/shell nanocrystals with Mn. , 2008, Journal of the American Chemical Society.

[42]  D. Sarma,et al.  To dope Mn2+ in a semiconducting nanocrystal. , 2008, Journal of the American Chemical Society.

[43]  Paul I. Archer,et al.  Luminescence in colloidal Mn2+-doped semiconductor nanocrystals , 2008 .

[44]  Junya Kobayashi,et al.  Effect of ZnS coating on the photovoltaic properties of CdSe quantum dot-sensitized solar cells , 2008 .

[45]  A. M. Chaparro,et al.  Study of CuInS2/ZnS/ZnO solar cells, with chemically deposited ZnS buffer layers from acidic solutions , 2008 .

[46]  Qing Wang,et al.  Characteristics of high efficiency dye-sensitized solar cells. , 2006, The journal of physical chemistry. B.

[47]  Nick S. Norberg,et al.  Giant excitonic Zeeman splittings in colloidal Co2+ -doped ZnSe quantum dots. , 2006, Journal of the American Chemical Society.

[48]  James R Chelikowsky,et al.  Self-purification in semiconductor nanocrystals. , 2006, Physical review letters.

[49]  S. Erwin,et al.  Impact of ripening on manganese-doped ZnSe nanocrystals. , 2006, Nano letters.

[50]  Michael Grätzel,et al.  Solar energy conversion by dye-sensitized photovoltaic cells. , 2005, Inorganic chemistry.

[51]  Peidong Yang,et al.  General route to vertical ZnO nanowire arrays using textured ZnO seeds. , 2005, Nano letters.

[52]  Peidong Yang,et al.  Nanowire dye-sensitized solar cells , 2005, Nature materials.

[53]  D. A. Schwartz,et al.  Magnetic quantum dots: synthesis, spectroscopy, and magnetism of Co2+ - and Ni2+-doped ZnO nanocrystals. , 2003, Journal of the American Chemical Society.

[54]  Xiaogang Peng,et al.  Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals , 2003 .

[55]  Moungi G. Bawendi,et al.  Organometallic Synthesis and Spectroscopic Characterization of Manganese-Doped CdSe Nanocrystals , 2000 .