Evolution and architecture of the inner membrane complex in asexual and sexual stages of the malaria parasite.

The inner membrane complex (IMC) is a unifying morphological feature of all alveolate organisms. It consists of flattened vesicles underlying the plasma membrane and is interconnected with the cytoskeleton. Depending on the ecological niche of the organisms, the function of the IMC ranges from a fundamental role as reinforcement system to more specialized roles in motility and cytokinesis. In this article, we present a comprehensive evolutionary analysis of IMC components, which exemplifies the adaptive nature of the IMCs' protein composition. Focusing on eight structurally distinct proteins in the most prominent "genus" of the Alveolata-the malaria parasite Plasmodium-we demonstrate that the level of conservation is reflected in phenotypic characteristics, accentuated in differential spatial-temporal patterns of these proteins in the motile stages of the parasite's life cycle. Colocalization studies with the centromere and the spindle apparatus reveal their discriminative biogenesis. We also reveal that the IMC is an essential structural compartment for the development of the sexual stages of Plasmodium, as it seems to drive the morphological changes of the parasite during the long and multistaged process of sexual differentiation. We further found a Plasmodium-specific IMC membrane matrix protein that highlights transversal structures in gametocytes, which could represent a genus-specific structural innovation required by Plasmodium. We conclude that the IMC has an additional role during sexual development supporting morphogenesis of the cell, which in addition to its functions in the asexual stages highlights the multifunctional nature of the IMC in the Plasmodium life cycle.

[1]  L. Sibley,et al.  Cytoskeleton of Apicomplexan Parasites , 2002, Microbiology and Molecular Biology Reviews.

[2]  Thomas J Naughton,et al.  Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified , 2006, BMC Evolutionary Biology.

[3]  L. Tilley,et al.  Tracking Glideosome-Associated Protein 50 Reveals the Development and Organization of the Inner Membrane Complex of Plasmodium falciparum , 2011, Eukaryotic Cell.

[4]  Robert C. Edgar,et al.  MUSCLE: a multiple sequence alignment method with reduced time and space complexity , 2004, BMC Bioinformatics.

[5]  Sean R Eddy,et al.  A new generation of homology search tools based on probabilistic inference. , 2009, Genome informatics. International Conference on Genome Informatics.

[6]  J. Derisi,et al.  The Transcriptome of the Intraerythrocytic Developmental Cycle of Plasmodium falciparum , 2003, PLoS biology.

[7]  R. Sinden,et al.  Gametocytogenesis of Plasmodium falciparum in vitro: an electron microscopic study , 1982, Parasitology.

[8]  L. Bannister,et al.  The role of the cytoskeleton in Plasmodium falciparum merozoite biology: an electron-microscopic view. , 1995, Annals of tropical medicine and parasitology.

[9]  T. Gilberger,et al.  Development and host cell modifications of Plasmodium falciparum blood stages in four dimensions. , 2011, Nature communications.

[10]  T. Mann,et al.  Identification of the membrane receptor of a class XIV myosin in Toxoplasma gondii , 2004, The Journal of cell biology.

[11]  J. Dessens,et al.  Malaria IMC1 Membrane Skeleton Proteins Operate Autonomously and Participate in Motility Independently of Cell Shape , 2010, The Journal of Biological Chemistry.

[12]  Satir Bh,et al.  Alveolar sacs of Tetrahymena: ultrastructural characteristics and similarities to subsurface cisterns of muscle and nerve , 1982 .

[13]  T. Gilberger,et al.  Host-cell invasion by malaria parasites: insights from Plasmodium and Toxoplasma. , 2008, Trends in parasitology.

[14]  R. Sinden,et al.  Cryofracture electron microscopy of the ookinete pellicle of Plasmodium gallinaceum reveals the existence of novel pores in the alveolar membranes. , 2001, Journal of structural biology.

[15]  Erik L. L. Sonnhammer,et al.  Inparanoid: a comprehensive database of eukaryotic orthologs , 2004, Nucleic Acids Res..

[16]  R. Allen FINE STRUCTURE OF MEMBRANOUS AND MICROFIBRILLAR SYSTEMS IN THE CORTEX OF PARAMECIUM CAUDATUM , 1971, The Journal of cell biology.

[17]  Andrei L. Turinsky,et al.  The evolutionary landscape of the chromatin modification machinery reveals lineage specific gains, expansions, and losses , 2010, Proteins.

[18]  Feng Chen,et al.  OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups , 2005, Nucleic Acids Res..

[19]  Erik L. L. Sonnhammer,et al.  InParanoid 6: eukaryotic ortholog clusters with inparalogs , 2007, Nucleic Acids Res..

[20]  D. Dive,et al.  Plasmodium falciparum Dynein Light Chain 1 Interacts with Actin/Myosin during Blood Stage Development* , 2010, The Journal of Biological Chemistry.

[21]  Martin Vingron,et al.  TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing , 2002, Bioinform..

[22]  D. Ferguson,et al.  MORN1 Has a Conserved Role in Asexual and Sexual Development across the Apicomplexa , 2008, Eukaryotic Cell.

[23]  S. Wissig,et al.  Alveolar sacs of Tetrahymena: ultrastructural characteristics and similarities to subsurface cisterns of muscle and nerve. , 1982, Journal of cell science.

[24]  Lucas Lochovsky,et al.  PhyloPro: a web-based tool for the generation and visualization of phylogenetic profiles across Eukarya , 2011, Bioinform..

[25]  C. Janse,et al.  High-efficiency transfection and drug selection of genetically transformed blood stages of the rodent malaria parasite Plasmodium berghei , 2006, Nature Protocols.

[26]  J. M. Peregrín-Alvarez,et al.  The origins of apicomplexan sequence innovation. , 2009, Genome research.

[27]  D. Roos,et al.  Subpellicular microtubules associate with an intramembranous particle lattice in the protozoan parasite Toxoplasma gondii. , 1997, Journal of cell science.

[28]  D. Roos,et al.  The Plastid of Toxoplasma gondii Is Divided by Association with the Centrosomes , 2000, The Journal of cell biology.

[29]  P. Kugrens,et al.  Relationship between the flagellates and the ciliates. , 1992, Microbiological reviews.

[30]  J. Rayner,et al.  Plasmodium falciparum erythrocyte invasion: a conserved myosin associated complex. , 2006, Molecular and biochemical parasitology.

[31]  T. Gilberger,et al.  A Conserved Region in the EBL Proteins Is Implicated in Microneme Targeting of the Malaria Parasite Plasmodium falciparum* , 2006, Journal of Biological Chemistry.

[32]  M. Grainger,et al.  Dual acylation of the 45 kDa gliding-associated protein (GAP45) in Plasmodium falciparum merozoites. , 2006, Molecular and biochemical parasitology.

[33]  Richard Bartfai,et al.  A Major Role for the Plasmodium falciparum ApiAP2 Protein PfSIP2 in Chromosome End Biology , 2010, PLoS pathogens.

[34]  Kristina L. Ford,et al.  Ciliate pellicular proteome identifies novel protein families with characteristic repeat motifs that are common to alveolates. , 2011, Molecular biology and evolution.

[35]  P. Bradley,et al.  A Novel Family of Toxoplasma IMC Proteins Displays a Hierarchical Organization and Functions in Coordinating Parasite Division , 2010, PLoS pathogens.

[36]  K. Hu Organizational Changes of the Daughter Basal Complex during the Parasite Replication of Toxoplasma gondii , 2008, PLoS pathogens.

[37]  Christopher J. Tonkin,et al.  A Novel Family of Apicomplexan Glideosome-associated Proteins with an Inner Membrane-anchoring Role , 2009, The Journal of Biological Chemistry.

[38]  J. Rayner,et al.  Effects of calcium signaling on Plasmodium falciparum erythrocyte invasion and post-translational modification of gliding-associated protein 45 (PfGAP45). , 2009, Molecular and biochemical parasitology.

[39]  G. Torpier,et al.  Freeze fracture study of the pellicle of an eimerian sporozoite (Protozoa, Coccidia). , 1978, Journal of ultrastructure research.

[40]  R. Sinden Sexual development of malarial parasites. , 1983, Advances in parasitology.

[41]  H Kishino,et al.  Appropriate likelihood ratio tests and marginal distributions for evolutionary tree models with constraints on parameters. , 2000, Molecular biology and evolution.

[42]  Dominique Soldati-Favre,et al.  Functional dissection of the apicomplexan glideosome molecular architecture. , 2010, Cell host & microbe.

[43]  Dave Richard,et al.  A Conserved Molecular Motor Drives Cell Invasion and Gliding Motility across Malaria Life Cycle Stages and Other Apicomplexan Parasites* , 2006, Journal of Biological Chemistry.

[44]  Jürgen Bosch,et al.  The closed MTIP-myosin A-tail complex from the malaria parasite invasion machinery. , 2007, Journal of molecular biology.

[45]  M. Sogin,et al.  Ribosomal RNA sequences of Sarcocystis muris, Theileria annulata and Crypthecodinium cohnii reveal evolutionary relationships among apicomplexans, dinoflagellates, and ciliates. , 1991, Molecular and biochemical parasitology.

[46]  Matthias Marti,et al.  Re-defining the Golgi complex in Plasmodium falciparum using the novel Golgi marker PfGRASP , 2005, Journal of Cell Science.

[47]  D. Ferguson,et al.  A Toxoplasma MORN1 Null Mutant Undergoes Repeated Divisions but Is Defective in Basal Assembly, Apicoplast Division and Cytokinesis , 2010, PloS one.

[48]  E. Erbe,et al.  Plasmodium falciparum: freeze-fracture of the gametocyte pellicular complex. , 1987, Experimental parasitology.

[49]  I. Coppens,et al.  Myosin A tail domain interacting protein (MTIP) localizes to the inner membrane complex of Plasmodium sporozoites , 2003, Journal of Cell Science.

[50]  Daniel Rios,et al.  Ensembl 2011 , 2010, Nucleic Acids Res..

[51]  A. Cowman,et al.  Molecular and functional aspects of parasite invasion. , 2004, Trends in parasitology.

[52]  J. Yates,et al.  Identification of protein complexes in detergent-resistant membranes of Plasmodium falciparum schizonts. , 2007, Molecular and biochemical parasitology.

[53]  P. Ambroise‐Thomas,et al.  Signal transduction pathways involved in tumour necrosis factor secretion by Plasmodium falciparum-stimulated human monocytes. , 1994, Immunology.

[54]  B. Striepen,et al.  Fluorescent protein tagging in Toxoplasma gondii: identification of a novel inner membrane complex component conserved among Apicomplexa. , 2004, Molecular and biochemical parasitology.

[55]  R. Konings,et al.  Minimal variation in Pfs16, a novel protein located in the membrane of gametes and sporozoites of Plasmodium falciparum. , 1991, Molecular and biochemical parasitology.

[56]  C. Stoeckert,et al.  OrthoMCL: identification of ortholog groups for eukaryotic genomes. , 2003, Genome research.

[57]  Toni Gabaldón,et al.  trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses , 2009, Bioinform..

[58]  P. Simpson,et al.  Interaction and dynamics of the Plasmodium falciparum MTIP-MyoA complex, a key component of the invasion motor in the malaria parasite. , 2010, Molecular bioSystems.

[59]  Jianzhi Zhang,et al.  Rapid Subfunctionalization Accompanied by Prolonged and Substantial Neofunctionalization in Duplicate Gene Evolution , 2005, Genetics.

[60]  Andrew Rambaut,et al.  Bi-De: an application for simulating phylogenetic processes , 1996, Comput. Appl. Biosci..

[61]  D. Ferguson,et al.  A family of intermediate filament‐like proteins is sequentially assembled into the cytoskeleton of Toxoplasma gondii , 2011, Cellular microbiology.

[62]  K. Hu,et al.  Toxoplasma gondii Hsp20 is a stripe‐arranged chaperone‐like protein associated with the outer leaflet of the inner membrane complex , 2008, Biology of the cell.

[63]  A. Cowman,et al.  A var gene promoter controls allelic exclusion of virulence genes in Plasmodium falciparum malaria , 2006, Nature.

[64]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[65]  Anthony A. Holder,et al.  The Motor Complex of Plasmodium falciparum , 2008, Journal of Biological Chemistry.

[66]  S. Sharp,et al.  Improved synchronous production of Plasmodium falciparum gametocytes in vitro. , 2007, Molecular and biochemical parasitology.

[67]  L. Miller,et al.  Freeze-fracture study on the erythrocyte membrane during malarial parasite invasion , 1981, The Journal of cell biology.

[68]  W. Trager,et al.  Human malaria parasites in continuous culture. , 1976, Science.

[69]  J. Dessens,et al.  IMC1b Is a Putative Membrane Skeleton Protein Involved in Cell Shape, Mechanical Strength, Motility, and Infectivity of Malaria Ookinetes , 2008, Journal of Biological Chemistry.

[70]  K. Hu,et al.  Identification of PhIL1, a Novel Cytoskeletal Protein of the Toxoplasma gondii Pellicle, through Photosensitized Labeling with 5-[125I]Iodonaphthalene-1-Azide , 2006, Eukaryotic Cell.

[71]  K. Wollenberg,et al.  A complex of three related membrane proteins is conserved on malarial merozoites. , 2009, Molecular and biochemical parasitology.

[72]  Christopher J. Tonkin,et al.  Localization of organellar proteins in Plasmodium falciparum using a novel set of transfection vectors and a new immunofluorescence fixation method. , 2004, Molecular and biochemical parasitology.

[73]  T. Cavalier-smith,et al.  Kingdom protozoa and its 18 phyla. , 1993, Microbiological reviews.

[74]  L. Aravind,et al.  Centrins, Cell Cycle Regulation Proteins in Human Malaria Parasite Plasmodium falciparum* , 2008, Journal of Biological Chemistry.

[75]  D. Fidock,et al.  Transformation with human dihydrofolate reductase renders malaria parasites insensitive to WR99210 but does not affect the intrinsic activity of proguanil. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[76]  Ying Gao,et al.  Bioinformatics Applications Note Sequence Analysis Cd-hit Suite: a Web Server for Clustering and Comparing Biological Sequences , 2022 .

[77]  D. Soldati,et al.  The glideosome: a molecular machine powering motility and host-cell invasion by Apicomplexa. , 2004, Trends in cell biology.

[78]  G. McFadden,et al.  Alveolins, a new family of cortical proteins that define the protist infrakingdom Alveolata. , 2008, Molecular biology and evolution.

[79]  M. Grainger,et al.  The MTIP-myosin A complex in blood stage malaria parasites. , 2006, Journal of molecular biology.

[80]  Zbynek Bozdech,et al.  Transcriptional profiling of growth perturbations of the human malaria parasite Plasmodium falciparum , 2010, Nature Biotechnology.

[81]  S. Thiberge,et al.  Rab11A-Controlled Assembly of the Inner Membrane Complex Is Required for Completion of Apicomplexan Cytokinesis , 2009, PLoS pathogens.

[82]  T. Mann,et al.  Characterization of the subpellicular network, a filamentous membrane skeletal component in the parasite Toxoplasma gondii. , 2001, Molecular and biochemical parasitology.

[83]  R. Sinden,et al.  A malaria membrane skeletal protein is essential for normal morphogenesis, motility, and infectivity of sporozoites , 2004, The Journal of cell biology.

[84]  John Parkinson,et al.  PartiGeneDB—collating partial genomes , 2004, Nucleic Acids Res..

[85]  Malcolm J. McConville,et al.  Distinct Protein Classes Including Novel Merozoite Surface Antigens in Raft-like Membranes of Plasmodium falciparum* , 2005, Journal of Biological Chemistry.

[86]  Christian E. V. Storm,et al.  Automatic clustering of orthologs and in-paralogs from pairwise species comparisons. , 2001, Journal of molecular biology.

[87]  M. Lowe,et al.  Golgins and GRASPs: holding the Golgi together. , 2009, Seminars in cell & developmental biology.

[88]  O. Gascuel,et al.  A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. , 2003, Systematic biology.

[89]  M. Michael Gromiha,et al.  SRide: a server for identifying stabilizing residues in proteins , 2005, Nucleic Acids Res..

[90]  John P. Huelsenbeck,et al.  MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..

[91]  P. Ossorio,et al.  A soluble secretory protein of the intracellular parasite Toxoplasma gondii associates with the parasitophorous vacuole membrane through hydrophobic interactions. , 1994, The Journal of biological chemistry.