An efficient Benders decomposition for the p-median problem

The p-median problem is a classic discrete location problem with several applications. It aims to open p sites while minimizing the sum of the distances of each client to its nearest open site. We study a Benders decomposition of the most efficient formulation in the literature. We prove that the Benders cuts can be separated by a polynomial time algorithm. The Benders decomposition also leads to a new compact formulation for the p-median problem. We implement a branch-andBenders-cut approach that outperforms state-of-the-art methods on benchmark instances by an order of magnitude.

[1]  Roberto D. Galvão,et al.  A Dual-Bounded Algorithm for the p-Median Problem , 1980, Oper. Res..

[2]  J. Reese,et al.  Solution methods for the p‐median problem: An annotated bibliography , 2006, Networks.

[3]  Matteo Fischetti,et al.  Redesigning Benders Decomposition for Large-Scale Facility Location , 2017, Manag. Sci..

[4]  Jacques F. Benders,et al.  Partitioning procedures for solving mixed-variables programming problems , 2005, Comput. Manag. Sci..

[5]  Mauricio G. C. Resende,et al.  A Hybrid Heuristic for the p-Median Problem , 2004, J. Heuristics.

[6]  Olivier Briant,et al.  The Optimal Diversity Management Problem , 2004, Oper. Res..

[7]  Laurence A. Wolsey,et al.  A Canonical Representation of Simple Plant Location Problems and Its Applications , 1980, SIAM J. Matrix Anal. Appl..

[8]  Benders Decomposition ∗ , 2015 .

[9]  Jean-François Cordeau,et al.  Benders decomposition for very large scale partial set covering and maximal covering location problems , 2019, Eur. J. Oper. Res..

[10]  P. Pardalos,et al.  The p-Median Problem , 2013 .

[11]  Markus Sinnl,et al.  A scaleable projection-based branch-and-cut algorithm for the p-center problem , 2021, ArXiv.

[12]  S. L. Hakimi,et al.  Optimum Locations of Switching Centers and the Absolute Centers and Medians of a Graph , 1964 .

[13]  Charles ReVelle,et al.  Central Facilities Location , 2010 .

[14]  Jean-François Cordeau,et al.  Benders Decomposition for Very Large Scale Partial Set Covering and Maximal Covering Problems , 2018 .

[15]  Sumanta Basu,et al.  Metaheuristic applications on discrete facility location problems: a survey , 2014, OPSEARCH.

[16]  S. Salhi,et al.  AGGREGATION AND NON AGGREGATION TECHNIQUES FOR LARGE FACILITY LOCATION PROBLEMS - A SURVEY , 2015 .

[17]  Sourour Elloumi,et al.  A tighter formulation of the p-median problem , 2010, J. Comb. Optim..

[18]  O. Kariv,et al.  An Algorithmic Approach to Network Location Problems. II: The p-Medians , 1979 .

[19]  Igor Vasil'ev,et al.  Computational study of large-scale p-Median problems , 2007, Math. Program..

[20]  Martine Labbé,et al.  Solving Large p-Median Problems with a Radius Formulation , 2011, INFORMS J. Comput..

[21]  Gerhard Reinelt,et al.  TSPLIB - A Traveling Salesman Problem Library , 1991, INFORMS J. Comput..

[22]  Pierre Hansen,et al.  The p-median problem: A survey of metaheuristic approaches , 2005, Eur. J. Oper. Res..

[23]  Sourour Elloumi,et al.  A computational study for the p-median Problem , 2010, Electron. Notes Discret. Math..

[24]  Michel Gendreau,et al.  The Benders decomposition algorithm: A literature review , 2017, Eur. J. Oper. Res..

[25]  John E. Beasley,et al.  OR-Library: Distributing Test Problems by Electronic Mail , 1990 .