BBD: A new Bayesian bi-clustering denoising algorithm for IASI-NG hyperspectral images

We propose a new denoising method for 3D hyperspectral images for the future MetOp-Second Generation series satellite incorporating the new IASI-NG interferometer, to be launched in 2021. This adaptive method retrieves the data model directly from the input noisy granule, using the following techniques: dual clustering (spectral and spatial), dimensionality reduction by adaptive PCA, and Bayesian denoising. The use of dimensionality reduction by PCA has been already proven an effective denoising technique because of intrinsic data redundancy. We demonstrate here that by combining a local PCA dimensionality reduction with a dual clustering and a Bayesian denoising, it is possible to improve significantly the PSNR with respect to PCA reduction alone. This noise reduction hints at the possibility to multiply of the resolution of the satellite by factor 4, while keeping an acceptable SNR.

[1]  Nigel Atkinson,et al.  The use of principal component analysis for the assimilation of high‐resolution infrared sounder observations for numerical weather prediction , 2010 .

[2]  F. Bernard,et al.  Overview of IASI-NG the new generation of infrared atmospheric sounder , 2017, International Conference on Space Optics.

[3]  Carole Thiebaut,et al.  On-board compression of hyperspectral satellite data using band-reordering , 2011, Optical Engineering + Applications.

[4]  Vincent Guidard,et al.  Towards IASI-New Generation (IASI-NG): impact of improved spectral resolution and radiometric noise on the retrieval of thermodynamic, chemistry and climate variables , 2013 .

[5]  Guangyi Chen,et al.  Denoising of Hyperspectral Imagery Using Principal Component Analysis and Wavelet Shrinkage , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[6]  Jean-Michel Morel,et al.  Secrets of image denoising cuisine* , 2012, Acta Numerica.

[7]  Jean-Michel Morel,et al.  A Nonlocal Bayesian Image Denoising Algorithm , 2013, SIAM J. Imaging Sci..

[8]  C. Serio,et al.  σ-IASI-β: A HYPERFAST RADIATIVE TRANSFER CODE TO RETRIEVE SURFACE AND ATMOSPHERIC GEOPHYSICAL PARAMETERS , 2013 .

[9]  William L. Smith,et al.  A principal component noise filter for high spectral resolution infrared measurements , 2004 .

[10]  Vincent Guidard,et al.  Iasi-NG : un concentré d'innovations technologiques pour l'étude de l'atmosphère terrestre , 2014 .

[11]  Timothy J. Schmit,et al.  Lossless data compression for infrared hyperspectral sounders: an update , 2004, SPIE Optics + Photonics.

[12]  Johannes R. Sveinsson,et al.  Hyperspectral image denoising using 3D wavelets , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[13]  Alessandro Foi,et al.  Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering , 2007, IEEE Transactions on Image Processing.