Advancement and analysis of Gauss pseudospectral transcription for optimal control problems

Transcription for Optimal Control Problems by Geoffrey Todd Huntington B. S. Aerospace Engineering, University of California, Los Angeles, 2001 S. M. Aerospace Engineering, Massachusetts Institute of Technology, 2003 Submitted to the Department of Aeronautics and Astronautics in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Aeronautics and Astronautics at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2007 c © Geoffrey Todd Huntington, MMVII. All rights reserved. The author hereby grants to MIT permission to reproduce and distribute publicly paper and electronic copies of this thesis document in whole or in part.

[1]  Mark B. Milam,et al.  A new computational approach to real-time trajectory generation for constrained mechanical systems , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[2]  I. Michael Ross,et al.  A pseudospectral method for the optimal control of constrained feedback linearizable systems , 2005, Proceedings of 2005 IEEE Conference on Control Applications, 2005. CCA 2005..

[3]  A. Engelsone,et al.  Order of Convergence in the Direct Transcription Solution of Optimal Control Problems , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[4]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[5]  Owe Axelsson,et al.  Global integration of differential equations through Lobatto quadrature , 1964 .

[6]  G. Reddien Collocation at Gauss Points as a Discretization in Optimal Control , 1979 .

[7]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[8]  J. Betts Survey of Numerical Methods for Trajectory Optimization , 1998 .

[9]  I. Michael Ross,et al.  A Perspective on Methods for Trajectory Optimization , 2002 .

[10]  Stuart A. Stanton,et al.  Optimal Orbital Transfer Using a Legendre Pseudospectral Method , 2003 .

[11]  Arthur E. Bryson,et al.  Dynamic Optimization , 1998 .

[12]  M. L. Chambers The Mathematical Theory of Optimal Processes , 1965 .

[13]  I. Michael Ross,et al.  Direct Trajectory Optimization by a Chebyshev Pseudospectral Method ; Journal of Guidance, Control, and Dynamics, v. 25, 2002 ; pp. 160-166 , 2002 .

[14]  I. Michael Ross,et al.  Pseudospectral Methods for Infinite-Horizon Nonlinear Optimal Control Problems , 2005 .

[15]  Waldy K. Sjauw,et al.  Enhanced Procedures for Direct Trajectory Optimization Using Nonlinear Programming and Implicit Integration , 2006 .

[16]  R. Battin An introduction to the mathematics and methods of astrodynamics , 1987 .

[17]  Fariba Fahroo On Discrete-Time Optimality Conditions for Pseudospectral Methods, AIAA (2006; Keystone, Colorado) , 2006 .

[18]  Ella M. Atkins,et al.  Spacecraft Formation Optimization with a Multi-Impulse Design , 2005 .

[19]  John T. Betts A direct approach to solving optimal control problems , 1999, Computing in Science & Engineering.

[20]  J. How,et al.  Two-stage path planning approach for solving multiple spacecraft reconfiguration maneuvers , 2008 .

[21]  C. Canuto Spectral methods in fluid dynamics , 1991 .

[22]  D. Hull Conversion of optimal control problems into parameter optimization problems , 1996 .

[23]  Anil V. Rao,et al.  Practical Methods for Optimal Control Using Nonlinear Programming , 1987 .

[24]  J. A. Bryson Optimal control-1950 to 1985 , 1996 .

[25]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[26]  Weiwei Sun,et al.  Convergence Analysis of Spectral Collocation Methods for a Singular Differential Equation , 2003, SIAM J. Numer. Anal..

[27]  I. Michael Ross,et al.  A Pseudospectral Transformation of the Convectors of Optimal Control Systems , 2001 .

[28]  William W. Hager,et al.  Runge-Kutta methods in optimal control and the transformed adjoint system , 2000, Numerische Mathematik.

[29]  P. Daly,et al.  Analysis methods for multi-spacecraft data , 1998 .

[30]  Gamal N. Elnagar,et al.  The pseudospectral Legendre method for discretizing optimal control problems , 1995, IEEE Trans. Autom. Control..

[31]  P. Robert,et al.  13 - Tetrahedron Geometric Factors , 1998 .

[32]  J. R. M. Radok,et al.  Numerical Solution of Boundary Value Problems , 1960 .

[33]  Jonathan P. How,et al.  J2-Modified GVE-Based MPC for Formation Flying Spacecraft , 2005 .

[34]  I. Michael Ross Hybrid Optimal Control Framework for Mission Planning , 2005, Journal of Guidance, Control, and Dynamics.

[35]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[36]  F.Y. Hadaegh,et al.  A survey of spacecraft formation flying guidance and control. Part II: control , 2004, Proceedings of the 2004 American Control Conference.

[37]  I. Michael Ross,et al.  Pseudospectral Knotting Methods for Solving Optimal Control Problems , 2004 .

[38]  P. Williams Hermite-Legendre-Gauss-Lobatto Direct Transcription in Trajectory Optimization , 2009 .

[39]  J. Villadsen,et al.  Solution of differential equation models by polynomial approximation , 1978 .

[40]  Lorenz T. Biegler,et al.  Convergence rates for direct transcription of optimal control problems using collocation at Radau points , 2008, Comput. Optim. Appl..

[41]  Robert D. Russell,et al.  Numerical solution of boundary value problems for ordinary differential equations , 1995, Classics in applied mathematics.

[42]  Yuichi Tsuda GLOBAL OPTIMIZATION OF MANEUVER SCHEDULE FOR MULTIPLE SPACECRAFTS FLYING IN FORMATION , 2004 .

[43]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[44]  William W. Hager,et al.  Second-Order Runge-Kutta Approximations in Control Constrained Optimal Control , 2000, SIAM J. Numer. Anal..

[45]  Alfio Quarteroni,et al.  Finite element preconditioning for legendre spectral collocation approximations to elliptic equations and systems , 1992 .

[46]  C. Hargraves,et al.  DIRECT TRAJECTORY OPTIMIZATION USING NONLINEAR PROGRAMMING AND COLLOCATION , 1987 .

[47]  P. Williams A Gauss--Lobatto quadrature method for solving optimal control problems , 2006 .

[48]  Stephen L. Campbell,et al.  Convergence of Nonconvergent IRK Discretizations of Optimal Control Problems with State Inequality Constraints , 2001, SIAM J. Sci. Comput..

[49]  D. Gottlieb,et al.  Numerical analysis of spectral methods , 1977 .

[50]  Donald E. Kirk,et al.  Optimal Control Theory , 1970 .

[51]  J. M. Watt Numerical Initial Value Problems in Ordinary Differential Equations , 1972 .

[52]  I. Michael Ross,et al.  Direct trajectory optimization by a Chebyshev pseudospectral method , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[53]  P. Williams Jacobi pseudospectral method for solving optimal control problems , 2004 .

[54]  I. Michael Ross,et al.  A Direct Method for Solving Nonsmooth Optimal Control Problems , 2002 .

[55]  R. V. Dooren,et al.  A Chebyshev technique for solving nonlinear optimal control problems , 1988 .

[56]  Ella M. Atkins,et al.  Optimization of a Tetrahedral Satellite Formation , 2005 .

[57]  J. Betts,et al.  A sparse nonlinear optimization algorithm , 1994 .

[58]  John A. Lawton,et al.  Adjoint variable solutions via an auxiliary optimization problem , 1995 .

[59]  Georges S. Aoude,et al.  Two-stage path planning approach for designing multiple spacecraft reconfiguration maneuvers and application to SPHERES onboard ISS , 2007 .

[60]  A. Rao,et al.  AAS 05-103 OPTIMAL CONFIGURATION OF SPACECRAFT FORMATIONS VIA A GAUSS PSEUDOSPECTRAL METHOD , 2005 .

[61]  Michael A. Saunders,et al.  USER’S GUIDE FOR SNOPT 5.3: A FORTRAN PACKAGE FOR LARGE-SCALE NONLINEAR PROGRAMMING , 2002 .

[62]  E. Tadmor The exponential accuracy of Fourier and Chebyshev differencing methods , 1986 .

[63]  Hans Seywald,et al.  Method for automatic costate calculation , 1996 .

[64]  Oskar von Stryk,et al.  User's guide for DIRCOL (Version 2.1): a direct collacation method for the numerical solution of optimal control problems , 1999 .

[65]  J.,et al.  Tetrahedron Formation Control ' Jos 6 , .

[66]  I. Michael Ross,et al.  A Spectral Patching Method for Direct Trajectory Optimization , 2000 .

[67]  J. E. Cuthrell,et al.  On the optimization of differential-algebraic process systems , 1987 .

[68]  C. W. Gear,et al.  Numerical initial value problem~ in ordinary differential eqttations , 1971 .

[69]  W. Williamson Use of Polynomial Approximations to Calculate Suboptimal Controls , 1971 .

[70]  O. V. Stryk,et al.  Numerical Solution of Optimal Control Problems by Direct Collocation , 1993 .

[71]  Jan C. Willems 1696: the birth of optimal control , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[72]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[73]  Jonathan P. How,et al.  Distributed Control of Formation Flying Spacecraft Built on OA , 2003 .

[74]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[75]  Kenneth Holmström,et al.  Mixed-Integer expensive constrained global optimization with TOMLAB , 2005 .

[76]  Gamal N. Elnagar,et al.  Pseudospectral Legendre-based optimal computation of nonlinear constrained variational problems , 1998 .

[77]  I. Michael Ross,et al.  Costate Estimation by a Legendre Pseudospectral Method , 1998 .

[78]  W. Hager Rates of Convergence for Discrete Approximations to Unconstrained Control Problems , 1976 .

[79]  I. Michael Ross,et al.  DESIGNING OPTIMAL SPACECRAFT FORMATIONS , 2002 .

[80]  James R. Wertz,et al.  Space Mission Analysis and Design , 1992 .

[81]  Anil V. Rao,et al.  EXTENSION OF A PSEUDOSPECTRAL LEGENDRE METHOD TO NON-SEQUENTIAL MULTIPLE-PHASE OPTIMAL CONTROL PROBLEMS , 2003 .

[82]  Anil V. Rao,et al.  Direct Trajectory Optimization and Costate Estimation via an Orthogonal Collocation Method , 2006 .

[83]  I. M. Ross,et al.  Convergence of pseudospectral discretizations of optimal control problems , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[84]  Arthur E. Bryson,et al.  Applied Optimal Control , 1969 .

[85]  Anil V. Rao,et al.  Optimal configuration of tetrahedral spacecraft formations , 2007 .

[86]  A. Rao,et al.  Performance Optimization of a Maneuvering Re-Entry Vehicle Using a Legendre Pseudospectral Method , 2002 .

[87]  Gamal N. Elnagar,et al.  Pseudospectral Chebyshev Optimal Control of Constrained Nonlinear Dynamical Systems , 1998, Comput. Optim. Appl..

[88]  J. E. Cuthrell,et al.  Simultaneous optimization and solution methods for batch reactor control profiles , 1989 .

[89]  David Benson,et al.  A Gauss pseudospectral transcription for optimal control , 2005 .

[90]  Eitan Tadmor,et al.  Convergence of spectral methods of hyperbolic initial-boundary value systems , 1987 .

[91]  Bruce A. Conway,et al.  Discrete approximations to optimal trajectories using direct transcription and nonlinear programming , 1992 .

[92]  Jonathan P. How,et al.  Distributed coordination and control of formation flying spacecraft , 2003, Proceedings of the 2003 American Control Conference, 2003..

[93]  David G. Hull,et al.  Optimal Control Theory for Applications , 2003 .

[94]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[95]  Frank H. Bauer,et al.  Preliminary Study for a Tetrahedron Formation: Quality Factors and Visualization , 2002 .

[96]  Conrad Schi A PRELIMINARY STUDY FOR A TETRAHEDRON FORMATION: QUALITY FACTORS AND VISUALIZATION , 2002 .

[97]  Victor M. Becerra,et al.  Optimal control , 2008, Scholarpedia.

[98]  David Gottlieb,et al.  The stability of pseudospectral-Chebyshev methods , 1981 .

[99]  Mark B. Milam,et al.  Real-Time Optimal Trajectory Generation for Constrained Dynamical Systems , 2003 .

[100]  J. Stoer,et al.  Introduction to Numerical Analysis , 2002 .

[101]  Lorenz T. Biegler,et al.  Simultaneous strategies for optimization of differential-algebraic systems , 1990 .

[102]  T. A. Zang,et al.  Spectral Methods for Partial Differential Equations , 1984 .

[103]  I.M. Ross,et al.  On the Pseudospectral Covector Mapping Theorem for Nonlinear Optimal Control , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[104]  L. Breger,et al.  Formation flying control for the MMS mission using GVE-based MPC , 2005, Proceedings of 2005 IEEE Conference on Control Applications, 2005. CCA 2005..

[105]  Kok Lay Teo,et al.  A Unified Computational Approach to Optimal Control Problems , 1991 .

[106]  L.M. Mailhe,et al.  Initialization and resizing of formation flying using global and local optimization methods , 2004, 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No.04TH8720).

[107]  A. L. Herman,et al.  Direct optimization using collocation based on high-order Gauss-Lobatto quadrature rules , 1996 .

[108]  Jacques Vlassenbroeck,et al.  A chebyshev polynomial method for optimal control with state constraints , 1988, Autom..

[109]  Bengt Fornberg,et al.  A practical guide to pseudospectral methods: Introduction , 1996 .

[110]  A. Rao,et al.  POST-OPTIMALITY EVALUATION AND ANALYSIS OF A FORMATION FLYING PROBLEM VIA A GAUSS PSEUDOSPECTRAL METHOD , 2005 .

[111]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[112]  H. Bock,et al.  A Multiple Shooting Algorithm for Direct Solution of Optimal Control Problems , 1984 .

[113]  I. Michael Ross,et al.  Issues in the real-time computation of optimal control , 2006, Math. Comput. Model..

[114]  Frank L. Lewis,et al.  Optimal Control , 1986 .

[115]  D. Vallado Fundamentals of Astrodynamics and Applications , 1997 .

[116]  Michael Athans,et al.  Optimal Control , 1966 .

[117]  I. M. Levitt Advances in the astronautical sciences: Vol. 6, edited by Horace Jacobs and Eric Burgess. 898 pages, diagrams, illustrations, 612 × 978 in. New York, The Macmillan Co., 1961. Price, $25.00 , 1961 .

[118]  B. Silva,et al.  Dynamic Trajectory Optimization Between Unstable Steady-States of a Class of CSTRs , 2002 .

[119]  S. Ploen,et al.  A survey of spacecraft formation flying guidance and control (part 1): guidance , 2003, Proceedings of the 2003 American Control Conference, 2003..

[120]  I. Michael Ross,et al.  Legendre Pseudospectral Approximations of Optimal Control Problems , 2003 .

[121]  Steven P. Hughes,et al.  Formation Tetrahedron Design for Phase I of the Magnetospheric Multiscale Mission , 2003 .