Advancement and analysis of Gauss pseudospectral transcription for optimal control problems
暂无分享,去创建一个
[1] Mark B. Milam,et al. A new computational approach to real-time trajectory generation for constrained mechanical systems , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).
[2] I. Michael Ross,et al. A pseudospectral method for the optimal control of constrained feedback linearizable systems , 2005, Proceedings of 2005 IEEE Conference on Control Applications, 2005. CCA 2005..
[3] A. Engelsone,et al. Order of Convergence in the Direct Transcription Solution of Optimal Control Problems , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.
[4] C. R. Deboor,et al. A practical guide to splines , 1978 .
[5] Owe Axelsson,et al. Global integration of differential equations through Lobatto quadrature , 1964 .
[6] G. Reddien. Collocation at Gauss Points as a Discretization in Optimal Control , 1979 .
[7] L. Trefethen. Spectral Methods in MATLAB , 2000 .
[8] J. Betts. Survey of Numerical Methods for Trajectory Optimization , 1998 .
[9] I. Michael Ross,et al. A Perspective on Methods for Trajectory Optimization , 2002 .
[10] Stuart A. Stanton,et al. Optimal Orbital Transfer Using a Legendre Pseudospectral Method , 2003 .
[11] Arthur E. Bryson,et al. Dynamic Optimization , 1998 .
[12] M. L. Chambers. The Mathematical Theory of Optimal Processes , 1965 .
[13] I. Michael Ross,et al. Direct Trajectory Optimization by a Chebyshev Pseudospectral Method ; Journal of Guidance, Control, and Dynamics, v. 25, 2002 ; pp. 160-166 , 2002 .
[14] I. Michael Ross,et al. Pseudospectral Methods for Infinite-Horizon Nonlinear Optimal Control Problems , 2005 .
[15] Waldy K. Sjauw,et al. Enhanced Procedures for Direct Trajectory Optimization Using Nonlinear Programming and Implicit Integration , 2006 .
[16] R. Battin. An introduction to the mathematics and methods of astrodynamics , 1987 .
[17] Fariba Fahroo. On Discrete-Time Optimality Conditions for Pseudospectral Methods, AIAA (2006; Keystone, Colorado) , 2006 .
[18] Ella M. Atkins,et al. Spacecraft Formation Optimization with a Multi-Impulse Design , 2005 .
[19] John T. Betts. A direct approach to solving optimal control problems , 1999, Computing in Science & Engineering.
[20] J. How,et al. Two-stage path planning approach for solving multiple spacecraft reconfiguration maneuvers , 2008 .
[21] C. Canuto. Spectral methods in fluid dynamics , 1991 .
[22] D. Hull. Conversion of optimal control problems into parameter optimization problems , 1996 .
[23] Anil V. Rao,et al. Practical Methods for Optimal Control Using Nonlinear Programming , 1987 .
[24] J. A. Bryson. Optimal control-1950 to 1985 , 1996 .
[25] Carl de Boor,et al. A Practical Guide to Splines , 1978, Applied Mathematical Sciences.
[26] Weiwei Sun,et al. Convergence Analysis of Spectral Collocation Methods for a Singular Differential Equation , 2003, SIAM J. Numer. Anal..
[27] I. Michael Ross,et al. A Pseudospectral Transformation of the Convectors of Optimal Control Systems , 2001 .
[28] William W. Hager,et al. Runge-Kutta methods in optimal control and the transformed adjoint system , 2000, Numerische Mathematik.
[29] P. Daly,et al. Analysis methods for multi-spacecraft data , 1998 .
[30] Gamal N. Elnagar,et al. The pseudospectral Legendre method for discretizing optimal control problems , 1995, IEEE Trans. Autom. Control..
[31] P. Robert,et al. 13 - Tetrahedron Geometric Factors , 1998 .
[32] J. R. M. Radok,et al. Numerical Solution of Boundary Value Problems , 1960 .
[33] Jonathan P. How,et al. J2-Modified GVE-Based MPC for Formation Flying Spacecraft , 2005 .
[34] I. Michael Ross. Hybrid Optimal Control Framework for Mission Planning , 2005, Journal of Guidance, Control, and Dynamics.
[35] D. Gottlieb,et al. Numerical analysis of spectral methods : theory and applications , 1977 .
[36] F.Y. Hadaegh,et al. A survey of spacecraft formation flying guidance and control. Part II: control , 2004, Proceedings of the 2004 American Control Conference.
[37] I. Michael Ross,et al. Pseudospectral Knotting Methods for Solving Optimal Control Problems , 2004 .
[38] P. Williams. Hermite-Legendre-Gauss-Lobatto Direct Transcription in Trajectory Optimization , 2009 .
[39] J. Villadsen,et al. Solution of differential equation models by polynomial approximation , 1978 .
[40] Lorenz T. Biegler,et al. Convergence rates for direct transcription of optimal control problems using collocation at Radau points , 2008, Comput. Optim. Appl..
[41] Robert D. Russell,et al. Numerical solution of boundary value problems for ordinary differential equations , 1995, Classics in applied mathematics.
[42] Yuichi Tsuda. GLOBAL OPTIMIZATION OF MANEUVER SCHEDULE FOR MULTIPLE SPACECRAFTS FLYING IN FORMATION , 2004 .
[43] L. S. Pontryagin,et al. Mathematical Theory of Optimal Processes , 1962 .
[44] William W. Hager,et al. Second-Order Runge-Kutta Approximations in Control Constrained Optimal Control , 2000, SIAM J. Numer. Anal..
[45] Alfio Quarteroni,et al. Finite element preconditioning for legendre spectral collocation approximations to elliptic equations and systems , 1992 .
[46] C. Hargraves,et al. DIRECT TRAJECTORY OPTIMIZATION USING NONLINEAR PROGRAMMING AND COLLOCATION , 1987 .
[47] P. Williams. A Gauss--Lobatto quadrature method for solving optimal control problems , 2006 .
[48] Stephen L. Campbell,et al. Convergence of Nonconvergent IRK Discretizations of Optimal Control Problems with State Inequality Constraints , 2001, SIAM J. Sci. Comput..
[49] D. Gottlieb,et al. Numerical analysis of spectral methods , 1977 .
[50] Donald E. Kirk,et al. Optimal Control Theory , 1970 .
[51] J. M. Watt. Numerical Initial Value Problems in Ordinary Differential Equations , 1972 .
[52] I. Michael Ross,et al. Direct trajectory optimization by a Chebyshev pseudospectral method , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).
[53] P. Williams. Jacobi pseudospectral method for solving optimal control problems , 2004 .
[54] I. Michael Ross,et al. A Direct Method for Solving Nonsmooth Optimal Control Problems , 2002 .
[55] R. V. Dooren,et al. A Chebyshev technique for solving nonlinear optimal control problems , 1988 .
[56] Ella M. Atkins,et al. Optimization of a Tetrahedral Satellite Formation , 2005 .
[57] J. Betts,et al. A sparse nonlinear optimization algorithm , 1994 .
[58] John A. Lawton,et al. Adjoint variable solutions via an auxiliary optimization problem , 1995 .
[59] Georges S. Aoude,et al. Two-stage path planning approach for designing multiple spacecraft reconfiguration maneuvers and application to SPHERES onboard ISS , 2007 .
[60] A. Rao,et al. AAS 05-103 OPTIMAL CONFIGURATION OF SPACECRAFT FORMATIONS VIA A GAUSS PSEUDOSPECTRAL METHOD , 2005 .
[61] Michael A. Saunders,et al. USER’S GUIDE FOR SNOPT 5.3: A FORTRAN PACKAGE FOR LARGE-SCALE NONLINEAR PROGRAMMING , 2002 .
[62] E. Tadmor. The exponential accuracy of Fourier and Chebyshev differencing methods , 1986 .
[63] Hans Seywald,et al. Method for automatic costate calculation , 1996 .
[64] Oskar von Stryk,et al. User's guide for DIRCOL (Version 2.1): a direct collacation method for the numerical solution of optimal control problems , 1999 .
[65] J.,et al. Tetrahedron Formation Control ' Jos 6 , .
[66] I. Michael Ross,et al. A Spectral Patching Method for Direct Trajectory Optimization , 2000 .
[67] J. E. Cuthrell,et al. On the optimization of differential-algebraic process systems , 1987 .
[68] C. W. Gear,et al. Numerical initial value problem~ in ordinary differential eqttations , 1971 .
[69] W. Williamson. Use of Polynomial Approximations to Calculate Suboptimal Controls , 1971 .
[70] O. V. Stryk,et al. Numerical Solution of Optimal Control Problems by Direct Collocation , 1993 .
[71] Jan C. Willems. 1696: the birth of optimal control , 1996, Proceedings of 35th IEEE Conference on Decision and Control.
[72] T. A. Zang,et al. Spectral methods for fluid dynamics , 1987 .
[73] Jonathan P. How,et al. Distributed Control of Formation Flying Spacecraft Built on OA , 2003 .
[74] Michael A. Saunders,et al. SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..
[75] Kenneth Holmström,et al. Mixed-Integer expensive constrained global optimization with TOMLAB , 2005 .
[76] Gamal N. Elnagar,et al. Pseudospectral Legendre-based optimal computation of nonlinear constrained variational problems , 1998 .
[77] I. Michael Ross,et al. Costate Estimation by a Legendre Pseudospectral Method , 1998 .
[78] W. Hager. Rates of Convergence for Discrete Approximations to Unconstrained Control Problems , 1976 .
[79] I. Michael Ross,et al. DESIGNING OPTIMAL SPACECRAFT FORMATIONS , 2002 .
[80] James R. Wertz,et al. Space Mission Analysis and Design , 1992 .
[81] Anil V. Rao,et al. EXTENSION OF A PSEUDOSPECTRAL LEGENDRE METHOD TO NON-SEQUENTIAL MULTIPLE-PHASE OPTIMAL CONTROL PROBLEMS , 2003 .
[82] Anil V. Rao,et al. Direct Trajectory Optimization and Costate Estimation via an Orthogonal Collocation Method , 2006 .
[83] I. M. Ross,et al. Convergence of pseudospectral discretizations of optimal control problems , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).
[84] Arthur E. Bryson,et al. Applied Optimal Control , 1969 .
[85] Anil V. Rao,et al. Optimal configuration of tetrahedral spacecraft formations , 2007 .
[86] A. Rao,et al. Performance Optimization of a Maneuvering Re-Entry Vehicle Using a Legendre Pseudospectral Method , 2002 .
[87] Gamal N. Elnagar,et al. Pseudospectral Chebyshev Optimal Control of Constrained Nonlinear Dynamical Systems , 1998, Comput. Optim. Appl..
[88] J. E. Cuthrell,et al. Simultaneous optimization and solution methods for batch reactor control profiles , 1989 .
[89] David Benson,et al. A Gauss pseudospectral transcription for optimal control , 2005 .
[90] Eitan Tadmor,et al. Convergence of spectral methods of hyperbolic initial-boundary value systems , 1987 .
[91] Bruce A. Conway,et al. Discrete approximations to optimal trajectories using direct transcription and nonlinear programming , 1992 .
[92] Jonathan P. How,et al. Distributed coordination and control of formation flying spacecraft , 2003, Proceedings of the 2003 American Control Conference, 2003..
[93] David G. Hull,et al. Optimal Control Theory for Applications , 2003 .
[94] Philip Rabinowitz,et al. Methods of Numerical Integration , 1985 .
[95] Frank H. Bauer,et al. Preliminary Study for a Tetrahedron Formation: Quality Factors and Visualization , 2002 .
[96] Conrad Schi. A PRELIMINARY STUDY FOR A TETRAHEDRON FORMATION: QUALITY FACTORS AND VISUALIZATION , 2002 .
[97] Victor M. Becerra,et al. Optimal control , 2008, Scholarpedia.
[98] David Gottlieb,et al. The stability of pseudospectral-Chebyshev methods , 1981 .
[99] Mark B. Milam,et al. Real-Time Optimal Trajectory Generation for Constrained Dynamical Systems , 2003 .
[100] J. Stoer,et al. Introduction to Numerical Analysis , 2002 .
[101] Lorenz T. Biegler,et al. Simultaneous strategies for optimization of differential-algebraic systems , 1990 .
[102] T. A. Zang,et al. Spectral Methods for Partial Differential Equations , 1984 .
[103] I.M. Ross,et al. On the Pseudospectral Covector Mapping Theorem for Nonlinear Optimal Control , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.
[104] L. Breger,et al. Formation flying control for the MMS mission using GVE-based MPC , 2005, Proceedings of 2005 IEEE Conference on Control Applications, 2005. CCA 2005..
[105] Kok Lay Teo,et al. A Unified Computational Approach to Optimal Control Problems , 1991 .
[106] L.M. Mailhe,et al. Initialization and resizing of formation flying using global and local optimization methods , 2004, 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No.04TH8720).
[107] A. L. Herman,et al. Direct optimization using collocation based on high-order Gauss-Lobatto quadrature rules , 1996 .
[108] Jacques Vlassenbroeck,et al. A chebyshev polynomial method for optimal control with state constraints , 1988, Autom..
[109] Bengt Fornberg,et al. A practical guide to pseudospectral methods: Introduction , 1996 .
[110] A. Rao,et al. POST-OPTIMALITY EVALUATION AND ANALYSIS OF A FORMATION FLYING PROBLEM VIA A GAUSS PSEUDOSPECTRAL METHOD , 2005 .
[111] Dimitri P. Bertsekas,et al. Nonlinear Programming , 1997 .
[112] H. Bock,et al. A Multiple Shooting Algorithm for Direct Solution of Optimal Control Problems , 1984 .
[113] I. Michael Ross,et al. Issues in the real-time computation of optimal control , 2006, Math. Comput. Model..
[114] Frank L. Lewis,et al. Optimal Control , 1986 .
[115] D. Vallado. Fundamentals of Astrodynamics and Applications , 1997 .
[116] Michael Athans,et al. Optimal Control , 1966 .
[117] I. M. Levitt. Advances in the astronautical sciences: Vol. 6, edited by Horace Jacobs and Eric Burgess. 898 pages, diagrams, illustrations, 612 × 978 in. New York, The Macmillan Co., 1961. Price, $25.00 , 1961 .
[118] B. Silva,et al. Dynamic Trajectory Optimization Between Unstable Steady-States of a Class of CSTRs , 2002 .
[119] S. Ploen,et al. A survey of spacecraft formation flying guidance and control (part 1): guidance , 2003, Proceedings of the 2003 American Control Conference, 2003..
[120] I. Michael Ross,et al. Legendre Pseudospectral Approximations of Optimal Control Problems , 2003 .
[121] Steven P. Hughes,et al. Formation Tetrahedron Design for Phase I of the Magnetospheric Multiscale Mission , 2003 .