暂无分享,去创建一个
Ahmed M. Elgammal | Praneeth Vepakomma | Chetan Tonde | A. Elgammal | Praneeth Vepakomma | Chetan Tonde
[1] Victor J. Yohai,et al. The sliced inverse regression algorithm as a maximum likelihood procedure , 2009 .
[2] Adolfo Martínez Usó,et al. UJIIndoorLoc: A new multi-building and multi-floor database for WLAN fingerprint-based indoor localization problems , 2014, 2014 International Conference on Indoor Positioning and Indoor Navigation (IPIN).
[3] I. Stancu-Minasian. Nonlinear Fractional Programming , 1997 .
[4] Maria L. Rizzo,et al. Brownian distance covariance , 2009, 1010.0297.
[5] Maria L. Rizzo,et al. On the uniqueness of distance covariance , 2012 .
[6] Gang Niu,et al. Sufficient Component Analysis for Supervised Dimension Reduction , 2011, 1103.4998.
[7] G. Wahba,et al. Using distance covariance for improved variable selection with application to learning genetic risk models , 2015, Statistics in medicine.
[8] Ker-Chau Li,et al. Sliced Inverse Regression for Dimension Reduction , 1991 .
[9] R. Dennis Cook,et al. Partial central subspace and sliced average variance estimation , 2009 .
[10] Xiangrong Yin,et al. Sufficient Dimension Reduction via Distance Covariance , 2016 .
[11] D. Rubinfeld,et al. Hedonic housing prices and the demand for clean air , 1978 .
[12] S. Schaible. Minimization of ratios , 1976 .
[13] Maria L. Rizzo,et al. Measuring and testing dependence by correlation of distances , 2007, 0803.4101.
[14] R. Dennis Cook,et al. Diagnostic studies in sufficient dimension reduction , 2015 .
[15] J. Kiefer,et al. Sequential minimax search for a maximum , 1953 .
[16] Hans-Peter Kriegel,et al. 2D Image Registration in CT Images Using Radial Image Descriptors , 2011, MICCAI.
[17] Shun-ichi Amari,et al. Natural Gradient Works Efficiently in Learning , 1998, Neural Computation.
[18] Michael C. Hout,et al. Multidimensional Scaling , 2003, Encyclopedic Dictionary of Archaeology.
[19] Patrick J. F. Groenen,et al. Modern Multidimensional Scaling: Theory and Applications , 2003 .
[20] Heng-Hui Lue,et al. Sliced inverse regression for multivariate response regression , 2009 .
[21] Noam Slonim,et al. The Information Bottleneck : Theory and Applications , 2006 .
[22] Gábor J. Székely,et al. The distance correlation t-test of independence in high dimension , 2013, J. Multivar. Anal..
[23] Antonio Cuevas,et al. Variable selection in functional data classification: a maxima-hunting proposal , 2013, 1309.6697.
[24] K. Lange. The MM Algorithm , 2013 .
[25] R. Cook,et al. Likelihood-Based Sufficient Dimension Reduction , 2009 .
[26] Krisztian Buza,et al. Feedback Prediction for Blogs , 2012, GfKl.
[27] Shotaro Akaho,et al. Learning algorithms utilizing quasi-geodesic flows on the Stiefel manifold , 2005, Neurocomputing.
[28] Naftali Tishby,et al. The information bottleneck method , 2000, ArXiv.
[29] W. Torgerson. Multidimensional scaling: I. Theory and method , 1952 .
[30] Gal Chechik,et al. Information Bottleneck for Gaussian Variables , 2003, J. Mach. Learn. Res..
[31] Fang Zhou,et al. Predicting the Geographical Origin of Music , 2014, 2014 IEEE International Conference on Data Mining.
[32] Masao Fukushima,et al. Quadratic Fractional Programming Problems with Quadratic Constraints , 2008 .
[33] Rauf Izmailov,et al. Constructive setting for problems of density ratio estimation , 2015, Stat. Anal. Data Min..
[34] R. Cook. Graphics for regressions with a binary response , 1996 .
[35] Runze Li,et al. Feature Screening via Distance Correlation Learning , 2012, Journal of the American Statistical Association.
[36] Takafumi Kanamori,et al. Density Ratio Estimation in Machine Learning , 2012 .
[37] R. Dennis Cook,et al. Marginal tests with sliced average variance estimation , 2007 .
[38] R. Tapia,et al. On Convergence of Minimization Methods: Attraction, Repulsion, and Selection , 2000 .
[39] D. Hunter,et al. Optimization Transfer Using Surrogate Objective Functions , 2000 .
[40] K. Fukumizu,et al. Gradient-Based Kernel Dimension Reduction for Regression , 2014 .
[41] Masashi Sugiyama,et al. Sufficient Dimension Reduction via Squared-Loss Mutual Information Estimation , 2010, Neural Computation.