AgSbSe2 Inclusions Enabling High Thermoelectric and Mechanical Performance in n-Type Ag2Se-based Composites

[1]  Xiaoyuan Zhou,et al.  Formation Mechanism and High Thermoelectric Performance of Cu5+3xFe1‐xS4 Icosahedral Nanoparticles with Distinctive Core‐Shell Structures , 2022, Advanced Energy Materials.

[2]  Tian‐Ran Wei,et al.  Flexible thermoelectrics based on ductile semiconductors , 2022, Science.

[3]  L. Fu,et al.  Dramatic Enhancement of Thermoelectric Performance in PbTe by Unconventional Grain Shrinking in the Sintering Process , 2022, Advanced materials.

[4]  Xiaoyuan Zhou,et al.  High-performance magnesium-based thermoelectric materials: Progress and challenges , 2022, Journal of Magnesium and Alloys.

[5]  Ying Peng,et al.  Enhancing the thermoelectric performance of Ag2Se by non-stoichiometric defects , 2022, Applied Physics Letters.

[6]  Meng Li,et al.  A Solvothermal Synthetic Environmental Design for High‐Performance SnSe‐Based Thermoelectric Materials , 2022, Advanced Energy Materials.

[7]  Qian Zhang,et al.  Nanotwins Strengthening High Thermoelectric Performance Bismuth Antimony Telluride Alloys , 2022, Advanced science.

[8]  Tian‐Ran Wei,et al.  Thermoelectric Ag2Se: Imperfection, Homogeneity, and Reproducibility. , 2021, ACS applied materials & interfaces.

[9]  K. Cai,et al.  Exceptionally High Power Factor Ag2Se/Se/Polypyrrole Composite Films for Flexible Thermoelectric Generators , 2021, Advanced Functional Materials.

[10]  Xiaoyuan Zhou,et al.  Realizing Enhanced Thermoelectric Performance and Hardness in Icosahedral Cu5 FeS4- x Sex with High-Density Twin Boundaries. , 2021, Small.

[11]  Xiaoyuan Zhou,et al.  Constructing n-Type Ag2Se/CNTs Composites Toward Synergistically Enhanced Thermoelectric and Mechanical Performance , 2021, Acta Materialia.

[12]  Jie Chen,et al.  Simultaneously enhanced strength and plasticity of Ag2Se-based thermoelectric materials endowed by nano-twinned CuAgSe secondary phase , 2021, Acta Materialia.

[13]  M. Kanatzidis,et al.  High-performance thermoelectrics and challenges for practical devices , 2021, Nature Materials.

[14]  M. Wuttig,et al.  Boron Strengthened GeTe‐Based Alloys for Robust Thermoelectric Devices with High Output Power Density , 2021, Advanced Energy Materials.

[15]  Jingfeng Li,et al.  Power generation and thermoelectric cooling enabled by momentum and energy multiband alignments , 2021, Science.

[16]  M. Kanatzidis,et al.  Defect engineering in thermoelectric materials: what have we learned? , 2021, Chemical Society reviews.

[17]  Xiaoyuan Zhou,et al.  Melt-spun Sn1−−Sb Mn Te with unique multiscale microstructures approaching exceptional average thermoelectric zT , 2021 .

[18]  G. J. Snyder,et al.  Fracture toughness of thermoelectric materials , 2021 .

[19]  Gang Chen,et al.  Thermoelectric cooling materials , 2020, Nature Materials.

[20]  Bin Zhang,et al.  Realizing enhanced thermoelectric properties in Cu2S-alloyed SnSe based composites produced via solution synthesis and sintering , 2020, Journal of Materials Science & Technology.

[21]  Qiang Sun,et al.  Optimization of sodium hydroxide for securing high thermoelectric performance in polycrystalline Sn 1 − x Se via anisotropy and vacancy synergy , 2020 .

[22]  Xiaoyuan Zhou,et al.  General surfactant-free synthesis of binary silver chalcogenides with tuneable thermoelectric properties , 2020 .

[23]  Lidong Chen,et al.  Crystalline Structure-Dependent Mechanical and Thermoelectric Performance in Ag2Se1‐xSx System , 2020, Research.

[24]  R. Chetty,et al.  Structural stability enables high thermoelectric performance in room temperature Ag2Se , 2020, Journal of Materials Chemistry A.

[25]  J. Zou,et al.  Advanced Thermoelectric Design: From Materials and Structures to Devices. , 2020, Chemical reviews.

[26]  Yi Xie,et al.  Defects Engineering with Multiple Dimensions in Thermoelectric Materials , 2020, Research.

[27]  Zhigang Chen,et al.  Texture-dependent thermoelectric properties of nano-structured Bi2Te3 , 2020 .

[28]  G. J. Snyder,et al.  Weighted Mobility , 2020, Advanced materials.

[29]  Li-dong Zhao,et al.  Seeking new, highly effective thermoelectrics , 2020, Science.

[30]  X. Qin,et al.  High thermoelectric performance for an Ag2Se-based material prepared by a wet chemical method , 2020 .

[31]  M. Ohta,et al.  Temperature-Dependent Structural Variation and Cu Substitution in Thermoelectric Silver Selenide , 2020 .

[32]  D. Gregory,et al.  Facile in situ solution synthesis of SnSe/rGO nanocomposites with enhanced thermoelectric performance , 2020, Journal of Materials Chemistry A.

[33]  T. Takeuchi,et al.  Investigation of Thermoelectric Properties of Ag2SxSe1−x (x = 0.0, 0.2 and 0.4) , 2019, Journal of Electronic Materials.

[34]  Chen Ming,et al.  Flexible thermoelectrics: from silver chalcogenides to full-inorganic devices , 2019, Energy & Environmental Science.

[35]  Philp E. Goins,et al.  A Model of Grain Boundary Complexion Transitions and Grain Growth in Yttria-Doped Alumina , 2019, Acta Materialia.

[36]  Lidong Chen,et al.  Author Correction: Room-temperature ductile inorganic semiconductor , 2018, Nature Materials.

[37]  G. J. Snyder,et al.  Grain boundary dominated charge transport in Mg3Sb2-based compounds , 2018 .

[38]  V. Nassif,et al.  High-Performance Thermoelectric Bulk Colusite by Process Controlled Structural Disordering. , 2018, Journal of the American Chemical Society.

[39]  P. Rogl,et al.  How nanoparticles can change the figure of merit, ZT, and mechanical properties of skutterudites , 2017 .

[40]  M. Kanatzidis,et al.  Facile room temperature solventless synthesis of high thermoelectric performance Ag2Se: Via a dissociative adsorption reaction , 2017 .

[41]  Di Wu,et al.  Extraordinary Thermoelectric Performance Realized in n‐Type PbTe through Multiphase Nanostructure Engineering , 2017, Advanced materials.

[42]  Tracy K. N. Sweet,et al.  Facile Surfactant‐Free Synthesis of p‐Type SnSe Nanoplates with Exceptional Thermoelectric Power Factors , 2016, Angewandte Chemie.

[43]  Xianli Su,et al.  Mechanically Robust BiSbTe Alloys with Superior Thermoelectric Performance: A Case Study of Stable Hierarchical Nanostructured Thermoelectric Materials , 2015 .

[44]  D. Vashaee,et al.  Simultaneous enhancement of mechanical and thermoelectric properties of polycrystalline magnesium silicide with conductive glass inclusion , 2014 .

[45]  Lidong Chen,et al.  Thermoelectric transport of Se-rich Ag2Se in normal phases and phase transitions , 2014 .

[46]  G. J. Snyder,et al.  Evaluating the potential for high thermoelectric efficiency of silver selenide , 2013 .

[47]  Dawei Liu,et al.  BiSbTe‐Based Nanocomposites with High ZT: The Effect of SiC Nanodispersion on Thermoelectric Properties , 2013 .

[48]  D. Negi,et al.  High thermoelectric performance in tellurium free p-type AgSbSe2 , 2013 .

[49]  Heng Wang,et al.  Band Engineering of Thermoelectric Materials , 2012, Advanced materials.

[50]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[51]  Kun Li,et al.  Superionic phase transition in silver chalcogenide nanocrystals realizing optimized thermoelectric performance. , 2012, Journal of the American Chemical Society.

[52]  K. Nielsch,et al.  Thermoelectric Nanostructures: From Physical Model Systems towards Nanograined Composites , 2011 .

[53]  W. S. Liu,et al.  Experimental studies on anisotropic thermoelectric properties and structures of n-type Bi2Te2.7Se0.3. , 2010, Nano letters.

[54]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[55]  S. Faleev,et al.  Theory of enhancement of thermoelectric properties of materials with nanoinclusions , 2008, 0807.0260.

[56]  Sie Chin Tjong,et al.  Microstructural and mechanical characteristics of in situ metal matrix composites , 2000 .

[57]  M. Kanatzidis,et al.  Morphology modulation of SiC nano-additives for mechanical robust high thermoelectric performance Mg2Si1−xSnx/SiC nano-composites , 2017 .