Multi-output parameter estimation of dynamic systems by output shapes

A multi-output method of parameter estimation is introduced for dynamic systems that relies on the shape attributes of model outputs. The shapes of outputs in this method are represented by the surfaces that are generated by continuous wavelet transforms (CWTs) of the outputs in the time-scale domain. Since the CWTs also enhance the delineation of outputs and their sensitivities to model parameters in the time-scale domain, regions in the time-scale plane can be identified wherein the sensitivity of the output with respect to one model parameter dominates all the others. This allows approximation of the prediction error in terms of individual model parameters in isolated regions of the time-scale domain, thus enabling parameter estimation based on a small set of wavelet coefficients. These isolated regions of the time-scale plane also reveal numerous transparencies to be exploited for parameter estimation. It is shown that by taking advantage of these transparencies, the robustness of parameter estimation can be improved. The results also indicate the potential for improved precision and faster convergence of the parameter estimates when shape attributes are used in place of the magnitude.

[1]  Stéphane Mallat,et al.  A Wavelet Tour of Signal Processing, 2nd Edition , 1999 .

[2]  Karl Johan Åström,et al.  BOOK REVIEW SYSTEM IDENTIFICATION , 1994, Econometric Theory.

[3]  Roy D. Wallen,et al.  The Illustrated Wavelet Transform Handbook , 2004 .

[4]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[5]  R. Fletcher Practical Methods of Optimization , 1988 .

[6]  G. Seber,et al.  Nonlinear Regression: Seber/Nonlinear Regression , 2005 .

[7]  Dan Boneh,et al.  On genetic algorithms , 1995, COLT '95.

[8]  Maria Adler,et al.  Stable Adaptive Systems , 2016 .

[9]  Nan Wang,et al.  Van der Pol oscillator networks , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[10]  B. Pasik-Duncan,et al.  Adaptive Control , 1996, IEEE Control Systems.

[11]  Gail D. Baura,et al.  Nonlinear System Identification , 2002 .

[12]  Lennart Ljung,et al.  System identification (2nd ed.): theory for the user , 1999 .

[13]  James R. McCusker,et al.  Parameter Estimation by Parameter Signature Isolation in the Time-Scale Domain , 2009 .

[14]  James R. McCusker,et al.  Improved parameter estimation by noise compensation in the time-scale domain , 2011, Signal Process..

[15]  S. Mallat A wavelet tour of signal processing , 1998 .

[16]  Haye Hinrichsen,et al.  Entropy estimates of small data sets , 2008, 0804.4561.

[17]  M. J. Norman,et al.  Monte Carlo Optimization, Simulation and Sensitivity of Queueing Networks , 1987 .

[18]  Parlitz,et al.  Synchronization-based parameter estimation from time series. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[19]  Alex Simpkins,et al.  System Identification: Theory for the User, 2nd Edition (Ljung, L.; 1999) [On the Shelf] , 2012, IEEE Robotics & Automation Magazine.

[20]  ABC (ADVENTURES IN BIFURCATIONS AND CHAOS): A PROGRAM FOR STUDYING CHAOS , 1994 .

[21]  Ronald R. Coifman,et al.  Entropy-based algorithms for best basis selection , 1992, IEEE Trans. Inf. Theory.

[22]  Biao Huang,et al.  System Identification , 2000, Control Theory for Physicists.

[23]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[24]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[25]  Roger Fletcher,et al.  Practical methods of optimization; (2nd ed.) , 1987 .

[26]  O. Nelles Nonlinear System Identification , 2001 .

[27]  Andrej Pázman,et al.  Nonlinear Regression , 2019, Handbook of Regression Analysis With Applications in R.

[28]  Karl Johan Åström,et al.  Adaptive Control , 1989, Embedded Digital Control with Microcontrollers.

[29]  L. Tsimring,et al.  The analysis of observed chaotic data in physical systems , 1993 .

[30]  Parlitz,et al.  Estimating model parameters from time series by autosynchronization. , 1996, Physical review letters.

[31]  Stéphane Mallat,et al.  Singularity detection and processing with wavelets , 1992, IEEE Trans. Inf. Theory.

[32]  I. Johnstone,et al.  Wavelet Shrinkage: Asymptopia? , 1995 .