Energy transfer and 2.0 μm emission in Tm3+/Ho3+ co-doped α-NaYF4 single crystals

[1]  Baojiu Chen,et al.  Tm3+ doped α-NaYF4 single crystal for 2 μm laser application , 2015 .

[2]  Baojiu Chen,et al.  Growth and spectral properties of Ho3+ doped α-NaYF4 single crystal , 2015 .

[3]  Baojiu Chen,et al.  Efficient Quantum Cutting in Tb3+/Yb3+ Codoped $\alpha $ -NaYF4 Single Crystals Grown by Bridgman Method Using KF Flux for Solar Photovoltaic , 2015, IEEE Journal of Quantum Electronics.

[4]  Xiurong Ma,et al.  Spectral Characteristics of Femtosecond Pulses Propagation in Periodically Poled Lithium Niobate via Cascaded Quadratic Nonlinearity , 2015, IEEE Journal of Quantum Electronics.

[5]  Ning Wang,et al.  Current Crowding Phenomenon: Theoretical and Direct Correlation With the Efficiency Droop of Light Emitting Diodes by a Modified ABC Model , 2015, IEEE Journal of Quantum Electronics.

[6]  Baojiu Chen,et al.  Luminescent properties of Tm3+/ Ho3+ co-doped LiYF4 crystals , 2014 .

[7]  Wang Dongjie,et al.  Fluorescent Emissions (1800 nm) of LiLuF4 Single Crystals Doped with Various Tm3+ Concentrations , 2014 .

[8]  Wang Dongjie,et al.  Optimum fluorescence emission around 1.8 mu m for LiYF4 single crystals of various Tm3+-doping concentrations , 2014 .

[9]  M. Lastusaari,et al.  Enhancement of the up-conversion luminescence from NaYF4:Yb3+,Tb3+ , 2014 .

[10]  Ming Li,et al.  ∼2 µm Luminescence and energy transfer characteristics in Tm3+/Ho3+co-doped silicate glass , 2013 .

[11]  Baojiu Chen,et al.  Spectral properties and energy transfer in Er3+/Yb3+ co-doped LiYF4 crystal , 2013 .

[12]  D. Sun,et al.  Crystal growth and characterization of Ho-doped Lu3Ga5O12 for 2 μm laser , 2013 .

[13]  Lili Hu,et al.  Enhanced ~ 2 μm and upconversion emission from Ho–Yb codoped oxyfluoride glass ceramics , 2013 .

[14]  A. Jha,et al.  Enhanced 2.0 μm emission and energy transfer in Yb 3+ /Ho 3+ /Ce 3+ triply doped tellurite glass , 2012 .

[15]  Y. Hang,et al.  Polarized spectroscopic properties of Ho3+-doped LuLiF4 single crystal for 2 μm and 2.9 μm lasers , 2011 .

[16]  Chun Li,et al.  Spectral properties of Tm,Ho:LiYF4 laser crystal , 2011 .

[17]  Hongquan Yu,et al.  Optical Transition, Excitation State Absorption, and Energy Transfer Study of Er3+, Nd3+ Single‐Doped, and Er3+/Nd3+ Codoped Tellurite Glasses for Mid‐Infrared Laser Applications , 2011 .

[18]  Edwin Yue-Bun Pun,et al.  Judd–Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate oxide glasses , 2009 .

[19]  Stuart D. Jackson,et al.  The spectroscopic and energy transfer characteristics of the rare earth ions used for silicate glass fibre lasers operating in the shortwave infrared , 2009 .

[20]  A. Sabella,et al.  Application and Development of High-Power and Highly Efficient Silica-Based Fiber Lasers Operating at 2 $\mu$m , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[21]  Judith Grimm,et al.  Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+ , 2006 .

[22]  S. Jackson,et al.  Diode-cladding-pumped Yb3+, Ho(3+)-doped silica fiber laser operating at 2.1-microm. , 2003, Applied optics.

[23]  Martin Nikl,et al.  Growth and characterization of 3-in size Tm, Ho-codoped LiYF4 and LiLuF4 single crystals by the Czochralski method , 2003 .

[24]  G. Özen,et al.  Tm-to-Ho resonant and nonresonant energy transfer in LiYF4 , 2000 .

[25]  Sylvain Girard,et al.  Energy-transfer processes in Yb:Tm-doped KY 3 F 10 , LiYF 4 , and BaY 2 F 8 single crystals for laser operation at 1.5 and 2.3 μm , 2000 .

[26]  Ralph H. Page,et al.  Upconversion-pumped luminescence efficiency of rare-earth-doped hosts sensitized with trivalent ytterbium , 1997 .

[27]  M. Inokuti,et al.  Influence of Energy Transfer by the Exchange Mechanism on Donor Luminescence , 1965 .

[28]  R. E. Thoma,et al.  Phase Equilibria in the System Sodium Fluoride-Yttrium Fluoride , 1963 .