The Soret Effect: A Review of Recent Experimental Results

In the first part of the paper, we recall what the Soret effect is, together with its applications in science and industry. We emphasize the need to have a reliable data base for the Soret coefficient. Next we review the different techniques to measure the Soret coefficient (elementary Soret cell, beam deflection technique, thermal diffusion forced Rayleigh scattering technique, convective coupling and, in particular, the onset of convection in horizontal layers and the thermogravitational method). Results are provided for several systems, with both negative and positive Soret coefficients, and comparison between several laboratories are made for the same systems. We end with “benchmark” values of the Soret coefficient for some organic liquid mixtures of interest in the oil industry and to which all future new techniques should refer before gaining confidence. We conclude that correct values of the Soret coefficient can be obtained in earth conditions and we deny the need to go to microgravity. DOI: 10.1115/1.1992517

[1]  M. Marcoux,et al.  Transient-state method for coupled evaluation of Soret and Fick coefficients, and related tortuosity factors, using free and porous packed thermodiffusion cells: Application to CuSO4 aqueous solution ( 0.25M) , 2004, The European physical journal. E, Soft matter.

[2]  S. Wiegand Thermal diffusion in liquid mixtures and polymer solutions , 2004 .

[3]  M. M. Bou-Ali,et al.  Benchmark values for the Soret, thermal diffusion and diffusion coefficients of three binary organic liquid mixtures , 2003 .

[4]  W. Köhler,et al.  Precise determination of the Soret, thermal diffusion and mass diffusion coefficients of binary mixtures of dodecane, isobutylbenzene and 1,2,3,4-tetrahydronaphthalene by a holographic grating technique , 2003 .

[5]  P. Costeseque,et al.  Measuring the Soret coefficient of binary hydrocarbon mixtures in packed thermogravitational columns (contribution of Toulouse University to the benchmark test) , 2003 .

[6]  M. M. Bou-Ali,et al.  Precise determination of the Soret, thermodiffusion and isothermal diffusion coefficients of binary mixtures of dodecane, isobutylbenzene and 1,2,3,4-tetrahydronaphthalene (contribution of the University of Mons to the benchmark test) , 2003 .

[7]  S. Wiegand,et al.  Investigation of the Soret effect in binary liquid mixtures by thermal-diffusion-forced Rayleigh scattering (contribution to the benchmark test) , 2003 .

[8]  M. M. Bou-Ali,et al.  Determination of the thermodiffusion coefficient in three binary organic liquid mixtures by the thermogravitational method (contribution of the Universidad del País Vasco, Bilbao, to the benchmark test) , 2003 .

[9]  J. K. Platten,et al.  On the Measurement of Positive Soret Coefficients , 2002 .

[10]  W. Köhler,et al.  Measurement of Transport Coefficients by an Optical Grating Technique , 2002 .

[11]  P. Jamet,et al.  Thermodiffusion in Porous Media and Its Consequences , 2002 .

[12]  J. K. Platten,et al.  Soret Effect and Free Convection: A Way to Measure Soret Coefficients , 2002 .

[13]  M. Bou-Ali,et al.  Influence of the Grashof number on the stability of the thermogravitational effect in liquid mixtures with negative thermal diffusion factors , 1999 .

[14]  S. Vaerenbergh,et al.  Soret coefficients of organic solutions measured in the microgravity SCM experiment and by the flow and Bénard cells , 1998 .

[15]  F. Montel La place de la thermodynamique dans une modélisation des répartitions des espèces d'hydrocarbures dans les réservoirs pétroliers. Incidence sur les problèmes de production , 1998 .

[16]  P. Costeseque,et al.  Influence des concentrations relatives sur la diffusion thermogravitationnelle en milieu poreux des constituants d'un mélange ternaire d'hydrocarbures (système dodécane-isobutylbenzene-tétraline) , 1998 .

[17]  R. Gammon,et al.  Optical measurement of the Soret coefficient and the diffusion coefficient of liquid mixtures , 1996 .

[18]  J. Platten,et al.  Simulation numérique 2D de la séparation dans une colonne de thermogravitation et comparaison avec la théorie de Furry-Jones-Onsager-Majumbar , 1996 .

[19]  P. Costeseque,et al.  Essai d'analyse des relations entre la mobilité thermodiffusionnelle et les propriétés moléculaires intrinsèques des espèces, par la méthode des réseaux de neurones artificiels, dans le cas de mélanges complexes ségrégués par diffusion thermogravitationnelle en milieu poreux (huiles de gisement) , 1996 .

[20]  P. Costeseque,et al.  Sur la différenciation des hydrocarbures dans les fluides pétroliers par diffusion thermogravitationnelle en milieu poreux en présence d'un contact biphasique huile-eau , 1994 .

[21]  F. Montel Importance de la thermodiffusion en exploration et production pétrolières , 1994 .

[22]  E. Rivière,et al.  Enrichissements sélectifs d'hydrocarbures dans les huiles minérales naturelles par diffusion thermogravitationnelle en milieu poreux et cas des isomères paraffiniques , 1994 .

[23]  William A. Wakeham,et al.  Measurement of the Transport Properties of Fluids , 1991 .

[24]  Paul Kolodner,et al.  Optical measurement of the Soret coefficient of ethanol/water solutions , 1988 .

[25]  Legros,et al.  Soret coefficient and the two-component Bénard convection in the benzene-methanol system. , 1985, Physical review. A, General physics.

[26]  L. Sundelöf,et al.  Thermal Diffusion as a Mechanism for Biological Transport , 1984, Zeitschrift fur Naturforschung. Section C, Biosciences.

[27]  J. Hull Physics of the solar pond , 1979 .

[28]  M. Giglio,et al.  Thermal-Diffusion Measurements near a Consolute Critical Point , 1975 .

[29]  M. Gregg The Microstructure of the Ocean , 1973 .

[30]  E. Spiegel Convection in Stars II. Special Effects , 1972 .

[31]  Hershel Weinberger,et al.  The physics of the solar pond , 1964 .

[32]  R. A. Wentzell,et al.  Hydrodynamic and Hydromagnetic Stability. By S. CHANDRASEKHAR. Clarendon Press: Oxford University Press, 1961. 652 pp. £5. 5s. , 1962, Journal of Fluid Mechanics.

[33]  A. Emery,et al.  The packed thermal diffusion column , 1959 .

[34]  S. D. Majumdar The Theory of the Separation of Isotopes by Thermal Diffusion , 1951 .

[35]  P. Abelson Separation of isotopes by thermal diffusion , 1946 .

[36]  R. Clark Jones,et al.  On the Theory of Isotope Separation by Thermal Diffusion , 1939 .