The State Complexity of Two Combined Operations: Star of Catenation and Star of Reversal

The state complexity of two combined operations, star of catenation and star of reversal, on regular languages is considered in this paper. Tight bounds are obtained for both combined operations. The results clearly show that the state complexity of a combined operation can be very different from the composition of the state complexities of its participating individual operations. A new approach for research in automata and formal language theory is also explained.

[1]  Michael Domaratzki,et al.  State Complexity of Proportional Removals , 2002, J. Autom. Lang. Comb..

[2]  Derick Wood,et al.  On the state complexity of reversals of regular languages , 2004, Theor. Comput. Sci..

[3]  Jozef Jirásek,et al.  State Complexity of Concatenation and Complementation of Regular Languages , 2004, CIAA.

[4]  Galina Jirásková,et al.  State Complexity of Some Operations on Regular Languages , 2003, DCFS.

[5]  Ernst L. Leiss,et al.  Succint Representation of Regular Languages by Boolean Automata , 1981, Theor. Comput. Sci..

[6]  Jozef Jirásek,et al.  State complexity of concatenation and complementation , 2005, Int. J. Found. Comput. Sci..

[7]  Sheng Yu,et al.  NFA to DFA Transformation for Finite Languages over Arbitrary Alphabets , 1998, J. Autom. Lang. Comb..

[8]  Sheng Yu,et al.  State Complexity of Regular Languages , 2001, J. Autom. Lang. Comb..

[9]  Galina Jirásková,et al.  State complexity of some operations on binary regular languages , 2005, Theor. Comput. Sci..

[10]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[11]  I. N. Sneddon,et al.  Theory Of Automata , 1969 .

[12]  Sheng Yu,et al.  Tight Lower Bound for the State Complexity of Shuffle of Regular Languages , 2002, J. Autom. Lang. Comb..

[13]  Jeffrey Shallit,et al.  Unary Language Operations, State Complexity and Jacobsthal's Function , 2002, Int. J. Found. Comput. Sci..

[14]  Sheng Yu,et al.  The State Complexities of Some Basic Operations on Regular Languages , 1994, Theor. Comput. Sci..

[15]  Alexander Okhotin,et al.  State complexity of cyclic shift , 2008, RAIRO Theor. Informatics Appl..

[16]  Arto Salomaa,et al.  State complexity of combined operations , 2007, Theor. Comput. Sci..

[17]  Michael Domaratzki,et al.  State Complexity and Proportional Removals , 2001, DCFS.

[18]  Yo-Sub Han,et al.  State complexity of basic operations on suffix-free regular languages , 2009, Theor. Comput. Sci..

[19]  守屋 悦朗,et al.  J.E.Hopcroft, J.D. Ullman 著, "Introduction to Automata Theory, Languages, and Computation", Addison-Wesley, A5変形版, X+418, \6,670, 1979 , 1980 .

[20]  Karel Culik,et al.  State Complexity of Basic Operations on Finite Languages , 1999, WIA.

[21]  Cyril Nicaud,et al.  Average State Complexity of Operations on Unary Automata , 1999, MFCS.

[22]  Martin Kutrib,et al.  Nondeterministic Descriptional Complexity Of Regular Languages , 2003, Int. J. Found. Comput. Sci..

[23]  Sheng Yu,et al.  On the State Complexity of k-Entry Deterministic Finite Automata , 2001, J. Autom. Lang. Comb..