The Harmonix Set: Beats, Downbeats, and Functional Segment Annotations of Western Popular Music

We introduce the Harmonix set: a collection of annotations of beats, downbeats, and functional segmentation for over 900 full tracks that covers a wide range of western popular music. Given the variety of annotated music information types in this set, and how strongly these three types of data are typically intertwined, we seek to foster research that focuses on multiple retrieval tasks at once. The dataset includes additional metadata such as MusicBrainz identifiers to support the linking of the dataset to third-party information or audio data when available. We describe the methodology employed in acquiring this set, including the annotation process and song selection. In addition, an initial data exploration of the annotations and actual dataset content is conducted. Finally, we provide a series of baselines of the Harmonix set with reference beat-trackers, downbeat estimation, and structural segmentation algorithms.

[1]  Malcolm D. Macleod,et al.  Particle Filtering Applied to Musical Tempo Tracking , 2004, EURASIP J. Adv. Signal Process..

[2]  Ag Armin Kohlrausch,et al.  The perception of structural boundaries in melody lines of Western popular music , 2009 .

[3]  Craig Stuart Sapp Comparative Analysis of Multiple Musical Performances , 2007, ISMIR.

[4]  Daniel P. W. Ellis,et al.  Beat Tracking by Dynamic Programming , 2007 .

[5]  Ichiro Fujinaga,et al.  Music Structure Segmentation Algorithm Evaluation: Expanding on MIREX 2010 Analyses and Datasets , 2011, ISMIR.

[6]  Matthew E. P. Davies,et al.  Selective Sampling for Beat Tracking Evaluation , 2012, IEEE Transactions on Audio, Speech, and Language Processing.

[7]  Orberto,et al.  Evaluation Methods for Musical Audio Beat Tracking Algorithms , 2009 .

[8]  Xavier Serra,et al.  Audio-Aligned Jazz Harmony Dataset for Automatic Chord Transcription and Corpus-based Research , 2018, ISMIR.

[9]  Markus Schedl,et al.  ENHANCED BEAT TRACKING WITH CONTEXT-AWARE NEURAL NETWORKS , 2011 .

[10]  Jonathan T. Foote,et al.  Methods for the Automatic Analysis of Music and Audio , 1999 .

[11]  Slim Essid,et al.  A Music Structure Informed Downbeat Tracking System Using Skip-chain Conditional Random Fields and Deep Learning , 2019, ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[12]  Oriol Nieto,et al.  Music segment similarity using 2D-Fourier Magnitude Coefficients , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[13]  Peter Grosche,et al.  Unsupervised Music Structure Annotation by Time Series Structure Features and Segment Similarity , 2014, IEEE Transactions on Multimedia.

[14]  Florian Krebs,et al.  madmom: A New Python Audio and Music Signal Processing Library , 2016, ACM Multimedia.

[15]  Matthew E. P. Davies,et al.  Evaluation of Audio Beat Tracking and Music Tempo Extraction Algorithms , 2007 .

[16]  Oriol Nieto,et al.  JAMS: A JSON Annotated Music Specification for Reproducible MIR Research , 2014, ISMIR.

[17]  Oriol Nieto,et al.  Systematic Exploration of Computational Music Structure Research , 2016, ISMIR.

[18]  D. Moelants Hype vs. Natural Tempo: a Long-term Study of Dance Music Tempi , 2008 .

[19]  Yann LeCun,et al.  Moving Beyond Feature Design: Deep Architectures and Automatic Feature Learning in Music Informatics , 2012, ISMIR.

[20]  Luiz W. P. Biscainho,et al.  Beat and Downbeat Tracking Based on Rhythmic Patterns Applied to the Uruguayan Candombe Drumming , 2015, ISMIR.

[21]  Ajay Srinivasamurthy,et al.  A supervised approach to hierarchical metrical cycle tracking from audio music recordings , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[22]  Florian Krebs,et al.  Joint Beat and Downbeat Tracking with Recurrent Neural Networks , 2016, ISMIR.

[23]  Ajay Srinivasamurthy,et al.  Tracking the "Odd": Meter Inference in a Culturally Diverse Music Corpus , 2014, ISMIR.

[24]  Jordan B. L. Smith,et al.  A Meta-Analysis of the MIREX Structural Segmentation Task , 2013, ISMIR.

[25]  Gerhard Widmer,et al.  Probabilistic Extraction of Beat Positions from a Beat Activation Function , 2014, ISMIR.

[26]  Colin Raffel,et al.  librosa: Audio and Music Signal Analysis in Python , 2015, SciPy.

[27]  Augusto Sarti,et al.  Multipath Beat Tracking , 2016 .

[28]  Christian Schörkhuber CONSTANT-Q TRANSFORM TOOLBOX FOR MUSIC PROCESSING , 2010 .

[29]  Gaël Richard,et al.  Feature adapted convolutional neural networks for downbeat tracking , 2016, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[30]  Meinard Müller,et al.  Audio-based Music Structure Analysis , 2010 .

[31]  Oriol Nieto,et al.  Evaluating Hierarchical Structure in Music Annotations , 2017, Front. Psychol..

[32]  Matthew C. McCallum,et al.  Unsupervised Learning of Deep Features for Music Segmentation , 2019, ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[33]  Florian Krebs,et al.  Rhythmic Pattern Modeling for Beat and Downbeat Tracking in Musical Audio , 2013, ISMIR.

[34]  Matthew E. P. Davies,et al.  One in the Jungle: Downbeat Detection in Hardcore, Jungle, and Drum and Bass , 2012, ISMIR.

[35]  Daniel P. W. Ellis,et al.  MIR_EVAL: A Transparent Implementation of Common MIR Metrics , 2014, ISMIR.

[36]  Geoffroy Peeters,et al.  Swing Ratio Estimation , 2015 .

[37]  Jordan B. L. Smith,et al.  Design and creation of a large-scale database of structural annotations , 2011, ISMIR.

[38]  Florian Krebs,et al.  An Efficient State-Space Model for Joint Tempo and Meter Tracking , 2015, ISMIR.

[39]  Ajay Srinivasamurthy,et al.  In Search of Automatic Rhythm Analysis Methods for Turkish and Indian Art Music , 2014 .

[40]  Masataka Goto,et al.  RWC Music Database: Popular, Classical and Jazz Music Databases , 2002, ISMIR.