Tempo: Robust and Self-Tuning Resource Management in Multi-tenant Parallel Databases

Multi-tenant database systems have a component called the Resource Manager, or RM that is responsible for allocating resources to tenants. RMs today do not provide direct support for performance objectives such as: "Average job response time of tenant A must be less than two minutes", or "No more than 5% of tenant B's jobs can miss the deadline of 1 hour." Thus, DBAs have to tinker with the RM's low-level configuration settings to meet such objectives. We propose a framework called Tempo that brings simplicity, self-tuning, and robustness to existing RMs. Tempo provides a simple interface for DBAs to specify performance objectives declaratively, and optimizes the RM configuration settings to meet these objectives. Tempo has a solid theoretical foundation which gives key robustness guarantees. We report experiments done on Tempo using production traces of data-processing workloads from companies such as Facebook and Cloudera. These experiments demonstrate significant improvements in meeting desired performance objectives over RM configuration settings specified by human experts.

[1]  Anita Weismantel Mikasa,et al.  Play it again , 1995 .

[2]  J. Kiefer,et al.  Stochastic Estimation of the Maximum of a Regression Function , 1952 .

[3]  Carlo Curino,et al.  Reservation-based Scheduling: If You're Late Don't Blame Us! , 2014, SoCC.

[4]  Fouad Ben Abdelaziz,et al.  Solution approaches for the multiobjective stochastic programming , 2012, Eur. J. Oper. Res..

[5]  David Jefferson,et al.  Fast Concurrent Simulation Using the Time Warp Mechanism. Part I. Local Control. , 1982 .

[6]  Wei Lin,et al.  Apollo: Scalable and Coordinated Scheduling for Cloud-Scale Computing , 2014, OSDI.

[7]  Roy H. Campbell,et al.  ARIA: automatic resource inference and allocation for mapreduce environments , 2011, ICAC '11.

[8]  Ion Stoica,et al.  True elasticity in multi-tenant data-intensive compute clusters , 2012, SoCC '12.

[9]  Michael Abd-El-Malek,et al.  Omega: flexible, scalable schedulers for large compute clusters , 2013, EuroSys '13.

[10]  John E. Dennis,et al.  Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems , 1998, SIAM J. Optim..

[11]  Scott Shenker,et al.  Choosy: max-min fair sharing for datacenter jobs with constraints , 2013, EuroSys '13.

[12]  Maozhen Li,et al.  MRSim: A discrete event based MapReduce simulator , 2010, 2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery.

[13]  Kemafor Anyanwu,et al.  Scheduling Hadoop Jobs to Meet Deadlines , 2010, 2010 IEEE Second International Conference on Cloud Computing Technology and Science.

[14]  Yanpei Chen,et al.  Interactive Analytical Processing in Big Data Systems: A Cross-Industry Study of MapReduce Workloads , 2012, Proc. VLDB Endow..

[15]  Srikanth Kandula,et al.  Multi-resource packing for cluster schedulers , 2014, SIGCOMM.

[16]  M. Emmerich,et al.  The computation of the expected improvement in dominated hypervolume of Pareto front approximations , 2008 .

[17]  Diksha Verma,et al.  Quincy: Fair Scheduling for Distributed Computing Clusters , 2014 .

[18]  Jignesh M. Patel,et al.  Towards Multi-Tenant Performance SLOs , 2012, IEEE Transactions on Knowledge and Data Engineering.

[19]  Daniel Hern'andez-Lobato,et al.  Predictive Entropy Search for Multi-objective Bayesian Optimization with Constraints , 2016, Neurocomputing.

[20]  Kalyanmoy Deb,et al.  Reference point based multi-objective optimization using evolutionary algorithms , 2006, GECCO.

[21]  Magdalena Balazinska,et al.  Changing the Face of Database Cloud Services with Personalized Service Level Agreements , 2015, CIDR.

[22]  Hitesh Ballani,et al.  End-to-end Performance Isolation Through Virtual Datacenters , 2014, OSDI.

[23]  Refail Kasimbeyli A conic scalarization method in multi-objective optimization , 2013, J. Glob. Optim..

[24]  LiFeng,et al.  CPU sharing techniques for performance isolation in multi-tenant relational database-as-a-service , 2013, VLDB 2013.

[25]  Wolfgang Ponweiser,et al.  Multiobjective Optimization on a Limited Budget of Evaluations Using Model-Assisted -Metric Selection , 2008, PPSN.

[26]  Abhishek Verma,et al.  Large-scale cluster management at Google with Borg , 2015, EuroSys.

[27]  Rodrigo Fonseca,et al.  Retro: Targeted Resource Management in Multi-tenant Distributed Systems , 2015, NSDI.

[28]  J. Désidéri Multiple-gradient descent algorithm (MGDA) for multiobjective optimization , 2012 .

[29]  W. Cleveland,et al.  Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting , 1988 .

[30]  Benjamin Hindman,et al.  Dominant Resource Fairness: Fair Allocation of Multiple Resource Types , 2011, NSDI.

[31]  Bu-Sung Lee,et al.  Long-term resource fairness: towards economic fairness on pay-as-you-use computing systems , 2014, ICS '14.

[32]  Badrish Chandramouli,et al.  A demonstration of SQLVM: performance isolation in multi-tenant relational database-as-a-service , 2013, SIGMOD '13.

[33]  Chao Li,et al.  Fuxi: a Fault-Tolerant Resource Management and Job Scheduling System at Internet Scale , 2014, Proc. VLDB Endow..

[34]  Rong Jin,et al.  Stochastic Convex Optimization with Multiple Objectives , 2013, NIPS.

[35]  Liang Dong,et al.  Starfish: A Self-tuning System for Big Data Analytics , 2011, CIDR.

[36]  DebK.,et al.  A fast and elitist multiobjective genetic algorithm , 2002 .

[37]  Patrick Wendell,et al.  Sparrow: distributed, low latency scheduling , 2013, SOSP.

[38]  Anees Shaikh,et al.  Performance Isolation and Fairness for Multi-Tenant Cloud Storage , 2012, OSDI.

[39]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[40]  Indranil Gupta,et al.  WOHA: Deadline-Aware Map-Reduce Workflow Scheduling Framework over Hadoop Clusters , 2014, 2014 IEEE 34th International Conference on Distributed Computing Systems.

[41]  Weisong Shi,et al.  Workload characterization on a production Hadoop cluster: A case study on Taobao , 2012, 2012 IEEE International Symposium on Workload Characterization (IISWC).

[42]  Randy H. Katz,et al.  Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center , 2011, NSDI.

[43]  Roy H. Campbell,et al.  Play It Again, SimMR! , 2011, 2011 IEEE International Conference on Cluster Computing.

[44]  Victor Picheny,et al.  Multiobjective optimization using Gaussian process emulators via stepwise uncertainty reduction , 2013, Statistics and Computing.

[45]  Joshua D. Knowles,et al.  ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems , 2006, IEEE Transactions on Evolutionary Computation.

[46]  Kalyanmoy Deb,et al.  Reference point based multi-objective optimization using evolutionary algorithms , 2006, GECCO '06.

[47]  Andrew V. Goldberg,et al.  Quincy: fair scheduling for distributed computing clusters , 2009, SOSP '09.

[48]  Calton Pu,et al.  Intelligent management of virtualized resources for database systems in cloud environment , 2011, 2011 IEEE 27th International Conference on Data Engineering.

[49]  Andreas Krause,et al.  Active Learning for Multi-Objective Optimization , 2013, ICML.

[50]  Carlo Curino,et al.  Apache Hadoop YARN: yet another resource negotiator , 2013, SoCC.

[51]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[52]  Srikanth Kandula,et al.  Jockey: guaranteed job latency in data parallel clusters , 2012, EuroSys '12.