Multisymplectic structure-preserving scheme for the coupled Gross–Pitaevskii equations

In this paper, we study numerically the dynamics of the rotating Bose–Einstein condensates (BECs) modelled by the coupled Gross–Pitaevskii (CGP) equations with angular momentum rotating terms. First, the multisymplectic structure of the CGP equations is investigated by introducing some canonical momenta which allows us to construct the corresponding multisymplectic schemes. Then applying the midpoint rule in both temporal and spatial directions, a multisymplectic scheme is proposed for the CGP equations. The conservative properties and the convergence analysis are discussed for the multisymplectic scheme. The cut-off function technique is utilized for the error estimation. Numerical examples are carried out to verify the conservative property and the convergence rate.

[1]  Tingchun Wang,et al.  Optimal Point-Wise Error Estimate of a Compact Difference Scheme for the Coupled Gross–Pitaevskii Equations in One Dimension , 2014, J. Sci. Comput..

[2]  W. Bao,et al.  Mathematical Models and Numerical Methods for Bose-Einstein Condensation , 2012, 1212.5341.

[3]  C. Wieman,et al.  Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor , 1995, Science.

[4]  Zhenguo Mu,et al.  A novel energy-preserving scheme for the coupled nonlinear Schrödinger equations , 2018, Int. J. Comput. Math..

[5]  Yanzhi Zhang,et al.  Dynamics of rotating two-component Bose-Einstein condensates and its efficient computation , 2007 .

[6]  Ying Liu,et al.  Globally conservative properties and error estimation of a multi-symplectic scheme for Schrödinger equations with variable coefficients , 2006 .

[7]  L. Kong,et al.  A novel kind of efficient symplectic scheme for Klein–Gordon–Schrödinger equation , 2019, Applied Numerical Mathematics.

[8]  T. Cazenave Semilinear Schrodinger Equations , 2003 .

[9]  Tingchun Wang,et al.  Optimal l∞ error estimates of finite difference methods for the coupled Gross-Pitaevskii equations in high dimensions , 2014 .

[10]  L. Kong,et al.  Efficient structure‐preserving schemes for good Boussinesq equation , 2018 .

[11]  Succi,et al.  Numerical solution of the gross-pitaevskii equation using an explicit finite-difference scheme: An application to trapped bose-einstein condensates , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[12]  Hanquan Wang,et al.  A time-splitting spectral method for coupled Gross-Pitaevskii equations with applications to rotating Bose-Einstein condensates , 2007 .

[13]  Yanzhi Zhang,et al.  A simple and efficient numerical method for computing the dynamics of rotating Bose-Einstein condensates via a rotating Lagrangian coordinate , 2013, 1305.1378.

[14]  Kong Linghua The splitting multisymplectic numerical methods for Hamiltonian systems , 2015 .

[15]  Jialin Hong,et al.  Novel Multi-Symplectic Integrators for Nonlinear Fourth-Order Schrodinger Equation with Trapped Term , 2009 .

[16]  S. Reich Multi-Symplectic Runge—Kutta Collocation Methods for Hamiltonian Wave Equations , 2000 .

[17]  Yushun Wang,et al.  Local energy-preserving and momentum-preserving algorithms for coupled nonlinear Schrödinger system , 2013, J. Comput. Phys..

[18]  Ying Cao,et al.  High-order compact splitting multisymplectic method for the coupled nonlinear Schrödinger equations , 2011, Comput. Math. Appl..

[19]  Jie Shen,et al.  A Generalized-Laguerre--Fourier--Hermite Pseudospectral Method for Computing the Dynamics of Rotating Bose--Einstein Condensates , 2009, SIAM J. Sci. Comput..

[20]  Linghua Kong,et al.  Multi-symplectic Preserving Integrator for the Schrödinger Equation with Wave Operator , 2014, 1410.8624.

[21]  Yongzhong Song,et al.  Numerical dispersion analysis of a multi-symplectic scheme for the three dimensional Maxwell's equations , 2013, J. Comput. Phys..

[22]  Weizhu Bao,et al.  Ground States and Dynamics of Spin-Orbit-Coupled Bose-Einstein Condensates , 2014, SIAM J. Appl. Math..

[23]  Mengzhao Qin,et al.  Explicit symplectic schemes for investigating the evolution of vortices in a rotating Bose–Einstein Condensate , 2003 .

[24]  On Difference Schemes and Symplectic Geometry ? X1 Introductory Remarks , 2022 .

[25]  W. Bao,et al.  MATHEMATICAL THEORY AND NUMERICAL METHODS FOR , 2012 .

[26]  C. E. Wieman,et al.  Vortices in a Bose Einstein condensate , 1999, QELS 2000.

[27]  Jing Chen,et al.  Symplectic structure-preserving integrators for the two-dimensional Gross-Pitaevskii equation for BEC , 2011, J. Comput. Appl. Math..

[28]  Weizhu Bao,et al.  Optimal error estimates of finite difference methods for the Gross-Pitaevskii equation with angular momentum rotation , 2012, Math. Comput..

[29]  Chun Li,et al.  Multi-symplectic Runge-Kutta methods for nonlinear Dirac equations , 2006 .

[30]  Yanzhi Zhang,et al.  A Simple and Efficient Numerical Method for Computing the Dynamics of Rotating Bose-Einstein Condensates via Rotating Lagrangian Coordinates , 2013, SIAM J. Sci. Comput..

[31]  Yushun Wang,et al.  Local discontinuous Galerkin methods based on the multisymplectic formulation for two kinds of Hamiltonian PDEs , 2018, Int. J. Comput. Math..

[32]  S. Reich,et al.  Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity , 2001 .

[33]  Qiang Du,et al.  Dynamics of Rotating Bose-Einstein Condensates and its Efficient and Accurate Numerical Computation , 2006, SIAM J. Appl. Math..

[34]  P. Maddaloni,et al.  Dynamics of two colliding Bose-Einstein condensates in an elongated magnetostatic trap , 2000 .

[35]  Yanzhi Zhang,et al.  An efficient spectral method for computing dynamics of rotating two-component Bose-Einstein condensates via coordinate transformation , 2013, J. Comput. Phys..

[36]  Yushun Wang,et al.  Some new structure-preserving algorithms for general multi-symplectic formulations of Hamiltonian PDEs , 2014, J. Comput. Phys..

[37]  K. B. Davis,et al.  Bose-Einstein Condensation in a Gas of Sodium Atoms , 1995, EQEC'96. 1996 European Quantum Electronic Conference.