Phase-shift in waveguide integrated Ge quantum wells

We report on the electro-refractive effect in Ge/SiGe multiple quantum wells grown by low energy plasma enhanced chemical vapor deposition (LEPECVD). The electro-refractive effect was experimentally characterized by the shift of Fabry-Perot fringes in the transmission spectra of a 64 μm long slab waveguide. A refractive index variation up to 1.3 × 10-3 was measured with an applied electric field of 88 kV/cm at 1475 nm, 50 meV below the excitonic resonance, with a VπLπ figure of merit of 0.46 V×cm. The device performances are promising for the realization of Mach Zehnder modulators in the Ge-Si material platform.

[1]  M. Morse,et al.  High speed silicon Mach-Zehnder modulator. , 2005, Optics express.

[2]  J. E. Roth,et al.  Simple Electroabsorption Calculator for Designing 1310 nm and 1550 nm Modulators Using Germanium Quantum Wells , 2012, IEEE Journal of Quantum Electronics.

[3]  J. Dismukes,et al.  Lattice Parameter and Density in Germanium-Silicon Alloys1 , 1964 .

[4]  David A. B. Miller,et al.  Selective epitaxial growth of Ge/Si0.15Ge0.85 quantum wells on Si substrate using reduced pressure chemical vapor deposition , 2011 .

[5]  J. Wortman,et al.  Young's Modulus, Shear Modulus, and Poisson's Ratio in Silicon and Germanium , 1965 .

[6]  Xavier Le Roux,et al.  Quantum-confined Stark effect measurements in Ge/SiGe quantum-well structures. , 2010, Optics letters.

[7]  David A. B. Miller,et al.  Indirect absorption in germanium quantum wells , 2011 .

[8]  Xavier Le Roux,et al.  Polarization dependence of quantum-confined Stark effect in Ge/SiGe quantum well planar waveguides. , 2011, Optics letters.

[9]  Philippe Lyan,et al.  Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure. , 2008, Optics express.

[10]  G. Reed Device physics: The optical age of silicon , 2004, Nature.

[11]  M Myronov,et al.  Modulation of the absorption coefficient at 1.3 μm in Ge/SiGe multiple quantum well heterostructures on silicon. , 2011, Optics letters.

[12]  Giovanni Isella,et al.  Low-energy plasma-enhanced chemical vapor deposition for strained Si and Ge heterostructures and devices , 2004 .

[13]  David A. B. Miller,et al.  Device Requirements for Optical Interconnects to Silicon Chips , 2009, Proceedings of the IEEE.

[14]  Jurgen Michel,et al.  An electrically pumped Ge-on-Si laser , 2012, OFC/NFOEC.

[15]  J. Bowers,et al.  Electrically pumped hybrid AlGaInAs-silicon evanescent laser. , 2006, Optics express.

[16]  D. Miller,et al.  A Ge/SiGe quantum well waveguide modulator monolithically integrated with SOI waveguides , 2012, 8th IEEE International Conference on Group IV Photonics.

[17]  Alessandro Virtuani,et al.  Defect imaging of SiGe strain relaxed buffers grown by LEPECVD , 2006 .

[18]  J. Michel,et al.  Ge-on-Si laser operating at room temperature. , 2010, Optics letters.

[19]  D. Miller,et al.  Strong quantum-confined Stark effect in germanium quantum-well structures on silicon , 2005, Nature.

[20]  Xavier Le Roux,et al.  Quantum-confined Stark effect at 1.3 μm in Ge/Si(0.35)Ge(0.65) quantum-well structure. , 2012, Optics letters.

[21]  F. K. Reinhart,et al.  Quadratic electro‐optic light modulation in a GaAs/AlGaAs multiquantum well heterostructure near the excitonic gap , 1986 .

[22]  P. R. Ashley,et al.  High-performance Mach-Zehnder modulators in multiple quantum well GaAs/AlGaAs , 1994 .

[23]  M. Romagnoli,et al.  An electrically pumped germanium laser. , 2012, Optics express.

[24]  D. Miller,et al.  Quadratic electro‐optic effect due to the quantum‐confined Stark effect in quantum wells , 1987 .

[25]  P. Crozat,et al.  42 GHz p.i.n Germanium photodetector integrated in a silicon-on-insulator waveguide. , 2009, Optics express.