Hadwiger's Conjecture for inflations of 3-chromatic graphs
暂无分享,去创建一个
[1] Robin Thomas,et al. Hadwiger's conjecture forK6-free graphs , 1993, Comb..
[2] Ellen Gethner,et al. The thickness and chromatic number of r-inflated graphs , 2010, Discret. Math..
[3] Béla Bollobás,et al. Hadwiger's Conjecture is True for Almost Every Graph , 1980, Eur. J. Comb..
[4] Anders Sune Pedersen,et al. Hadwiger's Conjecture and inflations of the Petersen graph , 2012, Discret. Math..
[5] Ellen Gethner,et al. More results on r-inflated graphs: Arboricity, thickness, chromatic number and fractional chromatic number , 2010, Ars Math. Contemp..
[6] Michael Stiebitz,et al. On a special case of Hadwiger's conjecture , 2003, Discuss. Math. Graph Theory.
[7] K. Wagner. Über eine Eigenschaft der ebenen Komplexe , 1937 .
[8] Bruce A. Reed,et al. Hadwiger's conjecture for line graphs , 2004, Eur. J. Comb..
[9] K. Appel,et al. Every planar map is four colorable. Part I: Discharging , 1977 .
[10] László Lovász,et al. Normal hypergraphs and the perfect graph conjecture , 1972, Discret. Math..
[11] Paul D. Seymour,et al. Graph Minors. XIX. Well-quasi-ordering on a surface , 2004, J. Comb. Theory, Ser. B.
[12] K. Appel,et al. Every Planar Map Is Four Colorable , 2019, Mathematical Solitaires & Games.
[13] Paul A. Catlin,et al. Hajós' graph-coloring conjecture: Variations and counterexamples , 1979, J. Comb. Theory, Ser. B.
[14] K. Appel,et al. Every planar map is four colorable. Part II: Reducibility , 1977 .
[15] Maria Chudnovsky,et al. Hadwiger's conjecture for quasi-line graphs , 2008 .
[16] Carsten Thomassen,et al. Some remarks on Hajo's' conjecture , 2005, J. Comb. Theory, Ser. B.