Hadwiger's Conjecture for inflations of 3-chromatic graphs

Hadwiger's Conjecture states that every k -chromatic graph has a complete minor of order k . A graph G ' is an inflation of a graph G if G ' is obtained from G by replacing each vertex v of G by a clique C v and joining two vertices of distinct cliques by an edge if and only if the corresponding vertices of G are adjacent. We present an algorithm for computing an upper bound on the chromatic number ? ( G ' ) of any inflation G ' of any 3 -chromatic graph G . As a consequence, we deduce that Hadwiger's Conjecture holds for any inflation of any 3 -colorable graph.

[1]  Robin Thomas,et al.  Hadwiger's conjecture forK6-free graphs , 1993, Comb..

[2]  Ellen Gethner,et al.  The thickness and chromatic number of r-inflated graphs , 2010, Discret. Math..

[3]  Béla Bollobás,et al.  Hadwiger's Conjecture is True for Almost Every Graph , 1980, Eur. J. Comb..

[4]  Anders Sune Pedersen,et al.  Hadwiger's Conjecture and inflations of the Petersen graph , 2012, Discret. Math..

[5]  Ellen Gethner,et al.  More results on r-inflated graphs: Arboricity, thickness, chromatic number and fractional chromatic number , 2010, Ars Math. Contemp..

[6]  Michael Stiebitz,et al.  On a special case of Hadwiger's conjecture , 2003, Discuss. Math. Graph Theory.

[7]  K. Wagner Über eine Eigenschaft der ebenen Komplexe , 1937 .

[8]  Bruce A. Reed,et al.  Hadwiger's conjecture for line graphs , 2004, Eur. J. Comb..

[9]  K. Appel,et al.  Every planar map is four colorable. Part I: Discharging , 1977 .

[10]  László Lovász,et al.  Normal hypergraphs and the perfect graph conjecture , 1972, Discret. Math..

[11]  Paul D. Seymour,et al.  Graph Minors. XIX. Well-quasi-ordering on a surface , 2004, J. Comb. Theory, Ser. B.

[12]  K. Appel,et al.  Every Planar Map Is Four Colorable , 2019, Mathematical Solitaires & Games.

[13]  Paul A. Catlin,et al.  Hajós' graph-coloring conjecture: Variations and counterexamples , 1979, J. Comb. Theory, Ser. B.

[14]  K. Appel,et al.  Every planar map is four colorable. Part II: Reducibility , 1977 .

[15]  Maria Chudnovsky,et al.  Hadwiger's conjecture for quasi-line graphs , 2008 .

[16]  Carsten Thomassen,et al.  Some remarks on Hajo's' conjecture , 2005, J. Comb. Theory, Ser. B.