Feedback control in fractal mechanics

Abstract It is an important application of fractal to introduce the fractal Hausdorff integration to mechanical theory using the self-similarity of fractal. In this paper, we realize the control of the self-similarity of fractal by use of the product auxiliary reference feedback control method. Especially, for the self-similar set – Julia set of the exponential function, we can control its size, position and other aspects through this method.

[1]  C. Beck Physical meaning for Mandelbrot and Julia sets , 1999 .

[2]  R. Devaney Sex: Dynamics, topology, and bifurcations of complex exponentials , 2001 .

[3]  M. Biskup,et al.  General theory of lee-yang zeros in models with first-order phase transitions , 2000, Physical review letters.

[4]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[5]  G. Klambauer Mathematical Analysis , 1975 .

[6]  Kenneth Falconer,et al.  Fractal Geometry: Mathematical Foundations and Applications , 1990 .

[7]  A. Osbaldestin 1/s-expansion for generalized dimensions in a hierarchical s-state Potts model , 1995 .

[8]  K. M. Kolwankar Studies of fractal structures and processes using methods of fractional calculus , 1998, chao-dyn/9811008.

[9]  R. Feynman,et al.  Quantum Mechanics and Path Integrals , 1965 .

[10]  Fractal cosmology in an open universe , 2000, astro-ph/0002504.

[11]  Pietro Cornetti,et al.  A fractional calculus approach to the description of stress and strain localization in fractal media , 2002 .

[12]  Bernard Derrida,et al.  Fractal structure of zeros in hierarchical models , 1983 .

[13]  Peter J. Bentley,et al.  Fractal Proteins , 2004, Genetic Programming and Evolvable Machines.

[14]  Wang Xing-yuan,et al.  Study on the physical meaning for generalized Mandelbrot-Julia sets based on the Langevin problem , 2004 .

[15]  Nick Laskin,et al.  Fractals and quantum mechanics. , 2000, Chaos.

[16]  H. Jauslin,et al.  Julia Sets in Iterative kam Methods for Eigenvalue Problems , 1998 .

[17]  Bin Lin,et al.  Yang-Lee zeros, Julia sets, and their singularity spectra. , 1989, Physical review. A, General physics.