A new method for smoothing surfaces and computing hermite interpolants
暂无分享,去创建一个
[1] Frank Zeilfelder,et al. Explicit estimates for bivariate hierarchical bases , 2003 .
[2] D. Sbibih,et al. New methods for constructing and compressing Hermite spline interpolants , 2006 .
[3] Wolfgang Dahmen,et al. C 1 -hierarchical bases , 1994 .
[4] A. Mazroui,et al. A recursive construction of Hermite spline interpolants and applications , 2005 .
[5] P. Oswald,et al. Hierarchical conforming finite element methods for the biharmonic equation , 1992 .
[6] A. Mazroui,et al. Recursive computation of bivariate Hermite spline interpolants , 2007 .
[7] Hans-Peter Seidel,et al. Multiresolution analysis over triangles, based on quadratic Hermite interpolation , 2000 .
[8] G. Faber. Über stetige Funktionen , 1908 .
[9] L. Schumaker. Spline Functions: Basic Theory , 1981 .
[10] Larry L. Schumaker,et al. Surface Compression Using a Space of C1 Cubic Splines with a Hierarchical Basis , 2003, Computing.
[11] H. Yserentant. On the multi-level splitting of finite element spaces , 1986 .
[12] Driss Sbibih,et al. Recursive computation of Hermite spherical spline interpolants , 2008 .
[13] P Oswald. Lp-approximation durch Reihen nach dem Haar-orthogonalsystem und dem Faber—Schauder-System , 1981 .
[14] Carl de Boor,et al. A Practical Guide to Splines , 1978, Applied Mathematical Sciences.
[15] Ahmed Tijini,et al. A simple method for smoothing functions and compressing Hermite data , 2005, Adv. Comput. Math..