Option pricing and hedging under a stochastic volatility Lévy process model

In this paper, we discuss a stochastic volatility model with a Lévy driving process and then apply the model to option pricing and hedging. The stochastic volatility in our model is defined by the continuous Markov chain. The risk-neutral measure is obtained by applying the Esscher transform. The option price using this model is computed by the Fourier transform method. We obtain the closed-form solution for the hedge ratio by applying locally risk-minimizing hedging.

[1]  Alan L. Lewis A Simple Option Formula for General Jump-Diffusion and Other Exponential Levy Processes , 2001 .

[2]  J. Duan THE GARCH OPTION PRICING MODEL , 1995 .

[3]  佐藤 健一 Lévy processes and infinitely divisible distributions , 2013 .

[4]  M. Yor,et al.  Stochastic Volatility for Lévy Processes , 2003 .

[5]  Hans U. Gerber,et al.  Option pricing by Esscher transforms. , 1995 .

[6]  Sebastian Jaimungal,et al.  Fourier Space Time-Stepping for Option Pricing With Levy Models , 2007 .

[7]  D. Sondermann Hedging of non-redundant contingent claims , 1985 .

[8]  S. Jaimungal,et al.  Option pricing with regime switching Lévy processes using Fourier space time stepping , 2007 .

[9]  J. W. Brown,et al.  Complex Variables and Applications , 1985 .

[10]  Qing Zhang,et al.  Option pricing in a regime-switching model using the fast Fourier transform , 2006 .

[11]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[12]  S. Levendorskii,et al.  Non-Gaussian Merton-Black-Scholes theory , 2002 .

[13]  Young Shin Kim,et al.  The relative entropy in CGMY processes and its applications to finance , 2007, Math. Methods Oper. Res..

[14]  Robert J. Elliott,et al.  Mathematics of Financial Markets , 1999 .

[15]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Thephlx Deutschemark Options , 1993 .

[16]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[17]  S. Rachev,et al.  Stable Paretian Models in Finance , 2000 .

[18]  R. Cont,et al.  Financial Modelling with Jump Processes , 2003 .

[19]  P. Carr,et al.  Option valuation using the fast Fourier transform , 1999 .

[20]  Svetlozar T. Rachev,et al.  Smoothly truncated stable distributions, GARCH-models, and option pricing , 2009, Math. Methods Oper. Res..

[21]  Robert J. Elliott,et al.  Option pricing and Esscher transform under regime switching , 2005 .

[22]  Svetlozar T. Rachev,et al.  Tempered stable and tempered infinitely divisible GARCH models , 2010 .

[23]  Svetlozar T. Rachev,et al.  The Modifled Tempered Stable Distribution, GARCH Models and Option Pricing , 2008 .

[24]  Robert J. Elliott,et al.  American options with regime switching , 2002 .

[25]  Yoshio Miyahara,et al.  The minimal entropy martingale measures for geometric Lévy processes , 2003, Finance Stochastics.

[26]  Frank J. Fabozzi,et al.  Financial Models with Levy Processes and Volatility Clustering , 2011 .