Spectral Methods Based on Nonclassical Orthogonal Polynomials
暂无分享,去创建一个
[1] D. Gottlieb,et al. Numerical analysis of spectral methods : theory and applications , 1977 .
[2] WALTER GAUTSCHI. Algorithm 726: ORTHPOL–a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules , 1994, TOMS.
[3] G. Golub,et al. How to generate unknown orthogonal polynomials out of known orthogonal polynomials , 1992 .
[4] Bruno Welfert. Generation of Pseudospectral Differentiation Matrices I , 1997 .
[5] D. Funaro. Polynomial Approximation of Differential Equations , 1992 .
[6] Walter Gautschi. Gauss-type Quadrature Rules for Rational Functions , 1993 .
[7] J. Pryce. Numerical Solution of Sturm-Liouville Problems , 1994 .
[8] David Elliott,et al. Numerical Integration IV , 1993 .
[9] Walter Gautschi,et al. Algorithm 793: GQRAT—Gauss quadrature for rational functions , 1999, TOMS.
[10] F. Stenger. Numerical Methods Based on Sinc and Analytic Functions , 1993 .
[11] Bengt Fornberg,et al. A practical guide to pseudospectral methods: Introduction , 1996 .
[12] Walter Van Assche,et al. Quadrature formulas based on rational interpolation , 1993, math/9307221.
[13] T. A. Zang,et al. Spectral methods for fluid dynamics , 1987 .
[14] E. Tadmor. The exponential accuracy of Fourier and Chebyshev differencing methods , 1986 .
[15] J. A. C. Weideman,et al. The eigenvalues of Hermite and rational spectral differentiation matrices , 1992 .
[16] S. Orszag,et al. Advanced Mathematical Methods For Scientists And Engineers , 1979 .