Dynamic characteristic of Bitcoin cryptocurrency in the reconstruction scheme

Abstract The methodology for detecting chaos from a time series is able if stock market indexes or oil prices are the observables. The analysis of volatilities and returns require only a series of historical prices. Routines run in the Maple environment. The conveniences of the symbolic computation are decisive for studies in this line of research. This work extends the domain of application in Econophysics if the observables are prices of cryptocurrencies. The methods include the detection of chaos and randomness. Application of the computational routines provides conclusive results on the underlying dynamics of the Bitcoin market since 18 Jul. 2010 to 06 May 2019. These results include a direct comparison between the Dow Jones stock market and Bitcoin prices.

[1]  L. G. S. Duarte,et al.  Alternative predictors in chaotic time series , 2017, Comput. Phys. Commun..

[2]  A. H. Dyhrberg Bitcoin, gold and the dollar – A GARCH volatility analysis , 2016 .

[3]  Salim Lahmiri,et al.  Chaos, randomness and multi-fractality in Bitcoin market , 2018 .

[4]  María José Basgall,et al.  Some Stylized Facts of the Bitcoin Market , 2017, 1708.04532.

[5]  Kenneth F. Wallis,et al.  Density Forecasting: A Survey , 2000 .

[6]  D. Ruelle Chaotic evolution and strange attractors : the statistical analysis of time series for deterministic nonlinear systems , 1989 .

[7]  S. Lahmiri,et al.  The high frequency multifractal properties of Bitcoin , 2019, Physica A: Statistical Mechanics and its Applications.

[8]  J. Yorke,et al.  Coping with chaos. Analysis of chaotic data and the exploitation of chaotic systems , 1994 .

[9]  Eng-Tuck Cheah,et al.  Speculative bubbles in Bitcoin markets? An empirical investigation into the fundamental value of Bitcoin , 2015 .

[10]  Salim Lahmiri,et al.  Cryptocurrency forecasting with deep learning chaotic neural networks , 2019, Chaos, Solitons & Fractals.

[11]  P. Royston Approximating the Shapiro-Wilk W-test for non-normality , 1992 .

[12]  P.R.L. Alves,et al.  Detecting chaos and predicting in Dow Jones Index , 2018 .

[13]  H. Kantz,et al.  Nonlinear time series analysis , 1997 .

[14]  L. G. S. Duarte,et al.  A new method for improved global mapping forecast , 2016, Comput. Phys. Commun..

[15]  F. Pukelsheim The Three Sigma Rule , 1994 .

[16]  P.R.L. Alves,et al.  A new characterization of chaos from a time series , 2017 .

[17]  S. Nadarajah,et al.  On the inefficiency of Bitcoin , 2017 .

[18]  L. G. S. Duarte,et al.  Improvement in global forecast for chaotic time series , 2016, Comput. Phys. Commun..

[19]  P.R.L. Alves,et al.  The goodness of global fitting in the reconstruction scheme , 2020, Comput. Phys. Commun..

[20]  Farmer,et al.  Predicting chaotic time series. , 1987, Physical review letters.

[21]  Salim Lahmiri,et al.  Long-range memory, distributional variation and randomness of bitcoin volatility , 2018 .

[22]  Holger Kantz,et al.  Practical implementation of nonlinear time series methods: The TISEAN package. , 1998, Chaos.

[23]  L. G. S. Duarte,et al.  A Maple package for improved global mapping forecast , 2014, Comput. Phys. Commun..

[24]  Mantegna,et al.  Variety and volatility in financial markets , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[25]  P. Alves Chaos in historical prices and volatilities with five-dimensional euclidean spaces , 2019, Chaos, Solitons & Fractals: X.

[26]  S. Lahmiri,et al.  Decomposing the persistence structure of Islamic and green crypto-currencies with nonlinear stepwise filtering , 2019, Chaos, Solitons & Fractals.

[27]  Robert Hudson,et al.  Calculating and Comparing Security Returns is Harder than you Think: A Comparison between Logarithmic and Simple Returns , 2010 .

[28]  Kevin James Daly,et al.  Financial volatility : issues and measuring techniques , 2008 .

[29]  Igor Klioutchnikov,et al.  Chaos Theory in Finance , 2017 .

[30]  Andrew Urquhart The Inefficiency of Bitcoin , 2016 .

[31]  F. Takens Detecting strange attractors in turbulence , 1981 .