A human proof of Gessel's lattice path conjecture

Gessel walks are lattice paths confined to the quarter plane that start at the origin and consist of unit steps going either West, East, South-West or North-East. In 2001, Ira Gessel conjectured a nice closed-form expression for the number of Gessel walks ending at the origin. In 2008, Kauers, Koutschan and Zeilberger gave a computer-aided proof of this conjecture. The same year, Bostan and Kauers showed, again using computer algebra tools, that the complete generating function of Gessel walks is algebraic. In this article we propose the first ``human proofs'' of these results. They are derived from a new expression for the generating function of Gessel walks in terms of Weierstrass zeta functions.

[1]  Marni Mishna,et al.  Two non-holonomic lattice walks in the quarter plane , 2009, Theor. Comput. Sci..

[2]  Doron Zeilberger,et al.  Proof of Ira Gessel's lattice path conjecture , 2008, Proceedings of the National Academy of Sciences.

[3]  G. Fayolle,et al.  Random Walks in the Quarter Plane: Algebraic Methods, Boundary Value Problems, Applications to Queueing Systems and Analytic Combinatorics , 2018 .

[4]  Doron Zeilberger,et al.  The quasi-holonomic ansatz and restricted lattice walks , 2008, 0806.4318.

[5]  L. Lipshitz,et al.  D-finite power series , 1989 .

[6]  V. A. Malyshev An analytical method in the theory of two-dimensional positive random walks , 1972 .

[7]  Mireille Bousquet-Mélou,et al.  Linear recurrences with constant coefficients: the multivariate case , 2000, Discret. Math..

[8]  Kilian Raschel,et al.  Explicit expression for the generating function counting Gessel's walks , 2009, Adv. Appl. Math..

[9]  Richard J. Boucherie,et al.  A linear programming approach to error bounds for random walks in the quarter-plane , 2014, Kybernetika.

[10]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[11]  Marni Mishna,et al.  Walks with small steps in the quarter plane , 2008, 0810.4387.

[12]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis , 2021 .

[13]  Alin Bostan,et al.  Non-D-finite excursions in the quarter plane , 2012, J. Comb. Theory A.

[14]  Kilian Raschel,et al.  New Steps in Walks with Small Steps in the Quarter Plane: Series Expressions for the Generating Functions , 2015 .

[15]  P. Flajolet,et al.  Analytic Combinatorics: RANDOM STRUCTURES , 2009 .

[16]  Dominique Gouyou-Beauchamps,et al.  Chemins sous-diagonaux et tableaux de Young , 1986 .

[17]  Kilian Raschel Counting walks in a quadrant: a unified approach via boundary value problems , 2010 .

[18]  Marko Petkovsek,et al.  On a conjecture of Ira Gessel , 2008 .

[19]  Stephen Melczer,et al.  Singularity Analysis Via the Iterated Kernel Method , 2014, Comb. Probab. Comput..

[20]  Irene A. Stegun,et al.  Pocketbook of mathematical functions , 1984 .

[21]  Guy Fayolle,et al.  On the Holonomy or Algebraicity of Generating Functions Counting Lattice Walks in the Quarter-Plane , 2010, 1004.1733.

[22]  Marni Mishna Classifying lattice walks restricted to the quarter plane , 2009, J. Comb. Theory, Ser. A.

[23]  Kilian Raschel,et al.  On the functions counting walks with small steps in the quarter plane , 2012 .

[24]  L. Flatto,et al.  Two parallel queues created by arrivals with two demands. II , 1984 .

[25]  Germain Kreweras,et al.  Sur une classe de problèmes de dénombrement liés au treillis des partitions des entiers , 1965 .

[26]  R. Vidunas Algebraic Transformations of Gauss Hypergeometric Functions , 2004, math/0408269.

[27]  J. C. Burkill,et al.  Complex Functions , 1968, Nature.

[28]  Mireille Bousquet-Mélou,et al.  Walks confined in a quadrant are not always D-finite , 2003, Theor. Comput. Sci..

[29]  R. Vidunas Transformations of algebraic Gauss hypergeometric functions , 2008, 0807.4808.

[30]  G. Pólya Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Straßennetz , 1921 .

[31]  Ping Sun,et al.  Proof of two conjectures of Petkovšek and Wilf on Gessel walks , 2012, Discret. Math..

[32]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[34]  Émile Picard,et al.  Sur les périodes des intégrales doubles et sur une classe d'équations différentielles linéaires , 1933 .

[35]  Didier Arquès Dénombrements de Chemins Dans -Real 2 Soumis A Contraintes , 1986, RAIRO Theor. Informatics Appl..

[36]  Mireille Bousquet-M'elou,et al.  Walks in the quarter plane: Kreweras’ algebraic model , 2004, math/0401067.

[37]  L. Flatto,et al.  Erratum: Two Parallel Queues Created by Arrivals with Two Demands I , 1985 .

[38]  Charalambos A. Charalambides,et al.  Enumerative combinatorics , 2018, SIGA.

[39]  Manuel Kauers,et al.  The complete Generating Function for Gessel Walks is Algebraic , 2009, ArXiv.