A human proof of Gessel's lattice path conjecture
暂无分享,去创建一个
[1] Marni Mishna,et al. Two non-holonomic lattice walks in the quarter plane , 2009, Theor. Comput. Sci..
[2] Doron Zeilberger,et al. Proof of Ira Gessel's lattice path conjecture , 2008, Proceedings of the National Academy of Sciences.
[3] G. Fayolle,et al. Random Walks in the Quarter Plane: Algebraic Methods, Boundary Value Problems, Applications to Queueing Systems and Analytic Combinatorics , 2018 .
[4] Doron Zeilberger,et al. The quasi-holonomic ansatz and restricted lattice walks , 2008, 0806.4318.
[5] L. Lipshitz,et al. D-finite power series , 1989 .
[6] V. A. Malyshev. An analytical method in the theory of two-dimensional positive random walks , 1972 .
[7] Mireille Bousquet-Mélou,et al. Linear recurrences with constant coefficients: the multivariate case , 2000, Discret. Math..
[8] Kilian Raschel,et al. Explicit expression for the generating function counting Gessel's walks , 2009, Adv. Appl. Math..
[9] Richard J. Boucherie,et al. A linear programming approach to error bounds for random walks in the quarter-plane , 2014, Kybernetika.
[10] Philippe Flajolet,et al. Analytic Combinatorics , 2009 .
[11] Marni Mishna,et al. Walks with small steps in the quarter plane , 2008, 0810.4387.
[12] Edmund Taylor Whittaker,et al. A Course of Modern Analysis , 2021 .
[13] Alin Bostan,et al. Non-D-finite excursions in the quarter plane , 2012, J. Comb. Theory A.
[14] Kilian Raschel,et al. New Steps in Walks with Small Steps in the Quarter Plane: Series Expressions for the Generating Functions , 2015 .
[15] P. Flajolet,et al. Analytic Combinatorics: RANDOM STRUCTURES , 2009 .
[16] Dominique Gouyou-Beauchamps,et al. Chemins sous-diagonaux et tableaux de Young , 1986 .
[17] Kilian Raschel. Counting walks in a quadrant: a unified approach via boundary value problems , 2010 .
[18] Marko Petkovsek,et al. On a conjecture of Ira Gessel , 2008 .
[19] Stephen Melczer,et al. Singularity Analysis Via the Iterated Kernel Method , 2014, Comb. Probab. Comput..
[20] Irene A. Stegun,et al. Pocketbook of mathematical functions , 1984 .
[21] Guy Fayolle,et al. On the Holonomy or Algebraicity of Generating Functions Counting Lattice Walks in the Quarter-Plane , 2010, 1004.1733.
[22] Marni Mishna. Classifying lattice walks restricted to the quarter plane , 2009, J. Comb. Theory, Ser. A.
[23] Kilian Raschel,et al. On the functions counting walks with small steps in the quarter plane , 2012 .
[24] L. Flatto,et al. Two parallel queues created by arrivals with two demands. II , 1984 .
[25] Germain Kreweras,et al. Sur une classe de problèmes de dénombrement liés au treillis des partitions des entiers , 1965 .
[26] R. Vidunas. Algebraic Transformations of Gauss Hypergeometric Functions , 2004, math/0408269.
[27] J. C. Burkill,et al. Complex Functions , 1968, Nature.
[28] Mireille Bousquet-Mélou,et al. Walks confined in a quadrant are not always D-finite , 2003, Theor. Comput. Sci..
[29] R. Vidunas. Transformations of algebraic Gauss hypergeometric functions , 2008, 0807.4808.
[30] G. Pólya. Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Straßennetz , 1921 .
[31] Ping Sun,et al. Proof of two conjectures of Petkovšek and Wilf on Gessel walks , 2012, Discret. Math..
[32] Milton Abramowitz,et al. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .
[34] Émile Picard,et al. Sur les périodes des intégrales doubles et sur une classe d'équations différentielles linéaires , 1933 .
[35] Didier Arquès. Dénombrements de Chemins Dans -Real 2 Soumis A Contraintes , 1986, RAIRO Theor. Informatics Appl..
[36] Mireille Bousquet-M'elou,et al. Walks in the quarter plane: Kreweras’ algebraic model , 2004, math/0401067.
[37] L. Flatto,et al. Erratum: Two Parallel Queues Created by Arrivals with Two Demands I , 1985 .
[38] Charalambos A. Charalambides,et al. Enumerative combinatorics , 2018, SIGA.
[39] Manuel Kauers,et al. The complete Generating Function for Gessel Walks is Algebraic , 2009, ArXiv.