LOCUS: Low cost upper atmosphere sounder

We present the results of an instrument concept study for a low cost terahertz sounder of the mesosphere and lower thermosphere (MLT). Recent advances in the development of Quantum Cascade Laser (QCL) technology to be used for Local Oscillators (LOs) mean that it has now become viable for the first time to build compact, low weight heterodyne receivers in the terahertz (THz) frequency range [28]. Some of the most important atmospheric constituents of the MLT region, e.g. atomic oxygen (O) and the hydroxyl radical (OH), can only realistically be measured at THz frequencies. The technical challenges of THz remote sensing result in a large uncertainly of the global distribution of these species. Recent research indicates that the MLT region exhibits links to processes associated with climate change. From this follows a strong need to measure the composition and dynamic of the MLT region more accurately and more comprehensively.

[1]  Gufran Beig,et al.  The relative importance of solar activity and anthropogenic influences on the ion composition, temperature, and associated neutrals of the middle atmosphere , 2000 .

[2]  A. Semenov,et al.  Long‐term temperature trends in the middle and upper atmosphere , 1996 .

[3]  J. Olivero,et al.  Latitude‐dependent long‐term variations in polar mesospheric clouds from SBUV version 3 PMC data , 2007 .

[4]  B S Williams,et al.  Frequency and phase-lock control of a 3 THz quantum cascade laser. , 2005, Optics letters.

[5]  R. Tolson,et al.  Evidence of long term global decline in the Earth's thermospheric densities apparently related to anthropogenic effects , 2000 .

[6]  A. Davies,et al.  Time-resolved measurement of pulse-to-pulse heating effects in a terahertz quantum cascade laser using an NbN superconducting detector , 2013 .

[7]  J. Laštovička Progress in trend studies: Highlights of the TREND2004 Workshop , 2005 .

[8]  V. P. Koshelets,et al.  Balloon-borne heterodyne stratospheric limb sounder TELIS ready for flight , 2007, SPIE Remote Sensing.

[9]  Rolando R. Garcia,et al.  Long‐term middle atmospheric influence of very large solar proton events , 2009 .

[10]  S. Solomon,et al.  Seasonal variation of thermospheric density and composition , 2009 .

[11]  Peter H. Siegel,et al.  A 2.5-THz receiver front end for spaceborne applications , 2000 .

[12]  P. Keckhut,et al.  Temperature trends in the middle atmosphere as seen by historical Russian rocket launches: Part 2, Heiss Island (80.6°N, 58°E) , 2008 .

[13]  H. B. Harlow,et al.  Determination of atomic oxygen density and temperature of the thermosphere by remote sensing , 1988 .

[14]  T. W. Crowe,et al.  First Results for a 2.5 THz Schottky Diode Waveguide Mixer , 1996 .

[15]  M. Kaufmann,et al.  The fine structure emission of thermospheric atomic oxygen , 1997 .

[16]  H. Hubers,et al.  Terahertz Heterodyne Receivers , 2008, IEEE Journal of Selected Topics in Quantum Electronics.

[17]  David W. J. Thompson,et al.  Interpretation of Recent Southern Hemisphere Climate Change , 2002, Science.

[18]  Manuel López-Puertas,et al.  Non-Lte Radiative Transfer in the Atmosphere , 2001 .

[19]  F. Lübken Nearly zero temperature trend in the polar summer mesosphere , 2000 .

[20]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[21]  A. Hedin MSIS‐86 Thermospheric Model , 1987 .

[22]  Stephan W Koch,et al.  Compact, high-power, room-temperature, narrow-line terahertz source , 2011 .

[23]  G. Thomas Global change in the mesosphere-lower thermosphere region: has it already arrived? , 1996 .

[24]  P. Keckhut,et al.  Midlatitude long‐term variability of the middle atmosphere: Trends and cyclic and episodic changes , 1995 .

[25]  J. Taubenheim,et al.  Long-term decrease of mesospheric temperature, 1963–1995, inferred from radiowave reflection heights , 1997 .

[26]  Guy P. Brasseur,et al.  Aeronomy of the Middle Atmosphere , 2009 .

[27]  G. Brasseur,et al.  Impact of molecular diffusion on the CO2 distribution and the temperature in the mesosphere , 2002 .

[28]  P. Križan,et al.  Trends in laminae in ozone profiles in relation to trends in some other middle atmospheric parameters , 2006 .

[29]  R. P. Lowe,et al.  Review of mesospheric temperature trends , 2003 .

[30]  J. Plane,et al.  Atmospheric chemistry of meteoric metals. , 2003, Chemical reviews.

[31]  B. Williams Terahertz quantum cascade lasers , 2007, 2008 Asia Optical Fiber Communication & Optoelectronic Exposition & Conference.

[32]  Robert E. Thompson,et al.  First confirmation that water ice is the primary component of polar mesospheric clouds , 2001 .

[33]  Astrid Maute,et al.  Thermosphere extension of the Whole Atmosphere Community Climate Model , 2010 .

[34]  Franz-Josef Lübken,et al.  Thermal structure of the Arctic summer mesosphere , 1999 .

[35]  Byron Alderman,et al.  The Low-Cost Upper-Atmosphere Sounder (LOCUS) , 2014 .

[36]  A. Davies,et al.  Terahertz semiconductor-heterostructure lasers , 2002, Summaries of Papers Presented at the Lasers and Electro-Optics. CLEO '02. Technical Diges.

[37]  Yah Leng Lim,et al.  Terahertz imaging through self-mixing in a quantum cascade laser. , 2011, Optics letters.

[38]  M. Gadsden Noctilucent clouds , 1982 .

[39]  G. Thomas Mesospheric clouds and the physics of the mesopause region , 1991 .

[40]  Peter H. Siegel,et al.  The Earth observing system microwave limb sounder (EOS MLS) on the aura Satellite , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[41]  M. Kaufmann,et al.  A global measurement of lower thermosphere atomic oxygen densities , 2000 .