Miniature organic models of enzymes

[1]  M. Komiyama,et al.  Model for "charge-relay": acceleration by carboxylate anion in intramolecular general base-catalyzed ester hydrolysis by the imidazolyl group. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[2]  I. Tabushi,et al.  The first successful carbonic anhydrase model prepared through a new route to regiospecifically bifunctionalized cyclodextrin , 1980 .

[3]  V. T. D'Souza,et al.  AN ORGANIC CHEMICAL MODEL OF THE ACYL-α-CHYMOTRYPSIN INTERMEDIATE , 1985 .

[4]  M. L. Bender,et al.  The spectrophotometric determination of the operational normality of an alpha-chymotrypsin solution. , 1961, The Journal of biological chemistry.

[5]  M Komiyama,et al.  Intramolecular general base-catalyzed ester hydrolyses by the imidazolyl group. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[6]  V. T. D'Souza,et al.  Miniature, organic models of chymotrypsin based on α-, β- and γ-cyclodextrins , 1986 .

[7]  Fredric M. Menger,et al.  On the source of intramolecular and enzymatic reactivity , 1985 .

[8]  D. Grant,et al.  Carbon-13 Magnetic Resonance. II. Chemical Shift Data for the Alkanes , 1964 .

[9]  Irwin A. Rose,et al.  Enzyme structure and mechanism (2nd edn): by Alan Fersht, W. H. Freeman & Co., 1985. £14.95 pbk, £28.95 hbk (xxi + 475 pages) ISBN 0 7167 1615 1 , 1985 .

[10]  I. M. Klotz,et al.  CATALYSIS OF ANILIDE HYDROLYSIS BY POLYETHYLENIMINE DERIVATIVES , 1984 .

[11]  M. L. Bender,et al.  The mechanism of the cycloamylose-accelerated cleavage of phenyl esters , 1967 .

[12]  H. Spiess,et al.  Analysis of the 13C chemical shift tensor in CO, Ni(CO)4, and Fe(CO)5 and its relationship to π‐back bonding , 1974 .

[13]  A. Pines,et al.  Carbon-13 chemical shielding tensors in single-crystal durene , 1973 .

[14]  D. Grant Proton-Decoupled Carbon-13 Magnetic Resonance , 1970 .

[15]  V. T. D'Souza,et al.  Synthesis and evaluation of a miniature organic model of chymotrypsin. , 1985, Biochemical and biophysical research communications.

[16]  R. Helbig,et al.  Oligonucleotide Synthesis with a Soluble Polymer as Carrier , 1966 .

[17]  Thomas A. Steitz,et al.  Structure of crystalline α-chymotrypsin: III. Crystallographic studies of substrates and inhibitors bound to the active site of α-chymotrypsin , 1969 .

[18]  J. Chang,et al.  Chemical shielding tensor of 13C in a carboxyl group , 1974 .

[19]  M. L. Bender,et al.  Alpha-chymotrypsin: enzyme concentration and kinetics. , 1967, Journal of chemical education.

[20]  L. Pauling Chemical achievement and hope for the future. , 1948, American scientist.

[21]  M. L. Bender,et al.  MECHANISM OF ACTION OF PROTEOLYTIC ENZYMES. , 1965, Annual review of biochemistry.

[22]  E. Fischer Einfluss der Configuration auf die Wirkung der Enzyme , 1894 .

[23]  D. Blow,et al.  Structure of alpha-chymotrypsin refined at 1.68 A resolution. , 1985, Journal of molecular biology.

[24]  D. Hilvert,et al.  Functionalized cyclodextrins as holoenzyme mimics of thiamine-dependent enzymes , 1984 .

[25]  M. Komiyama,et al.  General base-catalyzed ester hydrolysis as a model of the “charge-relay” system☆ , 1977 .

[26]  A. W. Czarnik,et al.  Transaminations by pyridoxamine selectively attached at C-3 in .beta.-cyclodextrin , 1983 .