Influence of temperature and CO 2 on the strontium and magnesium composition of coccolithophore calcite
暂无分享,去创建一个
Marius N. Müller | U. Riebesell | A. Eisenhauer | K. Schulz | H. Stoll | M. Lebrato | J. Ramos | S. Blanco-Ameijeiras | Scarlett Sett
[1] U. Riebesell,et al. Temperature Modulates Coccolithophorid Sensitivity of Growth, Photosynthesis and Calcification to Increasing Seawater pCO2 , 2014, PloS one.
[2] G. Nehrke,et al. A new model for biomineralization and trace-element signatures of Foraminifera tests , 2013 .
[3] C. Brownlee,et al. Dissecting the impact of CO2 and pH on the mechanisms of photosynthesis and calcification in the coccolithophore Emiliania huxleyi. , 2013, The New phytologist.
[4] D. Wolf-Gladrow,et al. Substrate supply for calcite precipitation in Emiliania huxleyi: assessment of different model approaches , 2013, Journal of phycology.
[5] J. Raven,et al. Environmental controls on coccolithophore calcification , 2012 .
[6] P. Boyd,et al. Understanding the responses of ocean biota to a complex matrix of cumulative anthropogenic change , 2012 .
[7] C. Bolton,et al. Vital effects in coccolith calcite: Cenozoic climate‐pCO2 drove the diversity of carbon acquisition strategies in coccolithophores? , 2012 .
[8] Marius N. Müller,et al. Influence of CO 2 and nitrogen limitation on the coccolith volume of Emiliania huxleyi (Haptophyta) , 2012 .
[9] W. Vyverman,et al. Phytoplankton community dynamics during late spring coccolithophore blooms at the continental margin of the Celtic Sea (North East Atlantic, 2006–2008) , 2012 .
[10] Marius N. Müller,et al. Removal of organic magnesium in coccolithophore calcite , 2012 .
[11] N. Shimizu,et al. B/Ca in coccoliths and relationship to calcification vesicle pH and dissolved inorganic carbon concentrations , 2012 .
[12] U. Riebesell,et al. Distinguishing between the effects of ocean acidification and ocean carbonation in the coccolithophore Emiliania huxleyi , 2011 .
[13] G. Langer,et al. Emiliania huxleyi shows identical responses to elevated pCO2 in TA and DIC manipulations , 2011 .
[14] P. Ziveri,et al. A universal carbonate ion effect on stable oxygen isotope ratios in unicellular planktonic calcifying organisms , 2011 .
[15] J. Baker,et al. Ecological and temperature controls on Mg/Ca ratios of Globigerina bulloides from the southwest Pacific Ocean , 2011 .
[16] Marius N. Müller,et al. Response of the coccolithophores Emiliania huxleyi and Coccolithus braarudii to changing seawater Mg2+ and Ca2+ concentrations: Mg/Ca, Sr/Ca ratios and δ44/40Ca, δ26/24Mg of coccolith calcite , 2011 .
[17] Z. Rengel,et al. Role of magnesium in alleviation of aluminium toxicity in plants. , 2011, Journal of experimental botany.
[18] U. Riebesell,et al. Effects of changes in carbonate chemistry speciation on Coccolithus braarudii: a discussion of coccolithophorid sensitivities , 2011 .
[19] K. Ra,et al. Mg isotopes in chlorophyll-a and coccoliths of cultured coccolithophores (Emiliania huxleyi) by MC-ICP-MS , 2010 .
[20] C. Brownlee,et al. Molecular Mechanisms Underlying Calcification in Coccolithophores , 2010 .
[21] U. Riebesell,et al. CO2 perturbation experiments: similarities and differences between dissolved inorganic carbon and total alkalinity manipulations , 2009 .
[22] G. Dickens,et al. Carbon dioxide forcing alone insufficient to explain Palaeocene–Eocene Thermal Maximum warming , 2009 .
[23] G. Nehrke,et al. Barium partitioning in coccoliths of Emiliania huxleyi , 2009 .
[24] F. Mackenzie,et al. Life on the margin: implications of ocean acidification on Mg-calcite, high latitude and cold-water marine calcifiers , 2008 .
[25] Jianwu Tang,et al. Sr2+/Ca2+ and 44Ca/40Ca fractionation during inorganic calcite formation: I. Sr incorporation , 2008 .
[26] Marius N. Müller,et al. E 2008, by the American Society of Limnology and Oceanography, Inc. Influence of cell cycle phase on calcification in the coccolithophore Emiliania huxleyi , 2022 .
[27] D. Archer,et al. Coccolithophore productivity response to greenhouse event of the Paleocene–Eocene Thermal Maximum , 2007 .
[28] P. Ziveri,et al. Relationship between coccolith Sr/Ca ratios and coccolithophore production and export in the Arabian Sea and Sargasso Sea , 2007 .
[29] F. Mackenzie,et al. Initial responses of carbonate-rich shelf sediments to rising atmospheric pCO2 and “ocean acidification”: Role of high Mg-calcites , 2006 .
[30] E. Erba. The first 150 million years history of calcareous nannoplankton : biosphere-geosphere interactions , 2006 .
[31] J. Erez,et al. Effect of Mg/Ca ratio in seawater on shell composition in shallow benthic foraminifera , 2006 .
[32] U. Riebesell,et al. Coccolith strontium to calcium ratios in Emiliania huxleyi: The dependence on seawater strontium and calcium concentrations , 2006 .
[33] J. Zachos,et al. Rapid Acidification of the Ocean During the Paleocene-Eocene Thermal Maximum , 2005, Science.
[34] F. Meldrum,et al. Structural and physiological effects of calcium and magnesium in Emiliania huxleyi (Lohmann) Hay and Mohler. , 2004, Journal of structural biology.
[35] U. Riebesell,et al. Effect of trace metal availability on coccolithophorid calcification , 2004, Nature.
[36] F. Meldrum,et al. The role of magnesium in stabilising amorphous calcium carbonate and controlling calcite morphologies , 2003 .
[37] P. Falkowski,et al. Climate proxies from Sr/Ca of coccolith calcite: calibrations from continuous culture of Emiliania huxleyi , 2002 .
[38] D. Schrag,et al. Growth rate dependence of Sr incorporation during calcification of Emiliania huxleyi , 2002 .
[39] H. Elderfield,et al. An intensity ratio calibration method for the accurate determination of Mg/Ca and Sr/Ca of marine carbonates by ICP‐AES , 2002 .
[40] S. Luan,et al. A Novel Family of Magnesium Transport Genes in Arabidopsis Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.010352. , 2001, The Plant Cell Online.
[41] R. Haese,et al. Continuous-flow analysis of dissolved inorganic carbon content in seawater. , 2001, Analytical chemistry.
[42] D. Schrag,et al. Sr/Ca variations in Cretaceous carbonates: relation to productivity and sea level changes , 2001 .
[43] D. Schrag,et al. Coccolith Sr/Ca as a new indicator of coccolithophorid calcification and growth rate , 2000 .
[44] E. Matsumoto,et al. Mg/Ca Thermometry in Coral Skeletons , 1996, Science.
[45] N. Welschmeyer. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments , 1994 .
[46] F. Millero,et al. The dissociation constants of carbonic acid in seawater at salinities 5 to 45 and temperatures 0 to 45°C , 1993 .
[47] Ulf Riebesell,et al. Guide to best practices for ocean acidification research and data reporting , 2011 .
[48] M. Gehlen,et al. Effects of Ocean Acidification on Pelagic Organisms and Ecosystems , 2011 .
[49] Ulf Riebesell,et al. BOX 3. GUIDE TO BEST PRACTICES IN OCEAN ACIDIFICATION RESEARCH AND DATA REPORTING , 2009 .
[50] P. Bown,et al. Calcareous nannoplankton evolution and diversity through time , 2004 .
[51] P. Ziveri,et al. Coccolithophorid-based geochemical paleoproxies , 2004 .
[52] A. Dickson,et al. Reference materials for oceanic CO2 analysis: a method for the certification of total alkalinity , 2003 .
[53] R. Guillard,et al. Culture of Phytoplankton for Feeding Marine Invertebrates , 1975 .