Influence of temperature and CO 2 on the strontium and magnesium composition of coccolithophore calcite

Marine calcareous sediments provide a fundamen- tal basis for palaeoceanographic studies aiming to recon- struct past oceanic conditions and understand key biogeo- chemical element cycles. Calcifying unicellular phytoplank- ton (coccolithophores) are a major contributor to both carbon and calcium cycling by photosynthesis and the production of calcite (coccoliths) in the euphotic zone, and the subsequent long-term deposition and burial into marine sediments. Here we present data from controlled laboratory experiments on four coccolithophore species and elucidate the relation be- tween the divalent cation (Sr, Mg and Ca) partitioning in coccoliths and cellular physiology (growth, calcification and photosynthesis). Coccolithophores were cultured under dif- ferent seawater temperature and carbonate chemistry condi- tions. The partition coefficient of strontium ( DSr) was posi- tively correlated with both carbon dioxide (pCO2) and tem- perature but displayed no coherent relation to particulate or- ganic and inorganic carbon production rates. Furthermore, DSr correlated positively with cellular growth rates when driven by temperature but no correlation was present when changes in growth rates were pCO2-induced. Our results demonstrate the complex interaction between environmen- tal forcing and physiological control on the strontium par- titioning in coccolithophore calcite and challenge interpre- tations of the coccolith Sr / Ca ratio from high-pCO2 envi- ronments (e.g. Palaeocene-Eocene thermal maximum). The partition coefficient of magnesium ( DMg) displayed species- specific differences and elevated values under nutrient limi- tation. No conclusive correlation between coccolith DMg and temperature was observed butpCO2 induced a rising trend in coccolith DMg. Interestingly, the best correlation was found between coccolith DMg and chlorophyll a production, sug- gesting that chlorophyll a and calcite associated Mg orig- inate from the same intracellular pool. These and previous findings indicate that Mg is transported into the cell and to the site of calcification via different pathways than Ca and Sr. Consequently, the coccolith Mg / Ca ratio should be de- coupled from the seawater Mg / Ca ratio. This study gives an extended insight into the driving factors influencing the coccolith Mg / Ca ratio and should be considered for future palaeoproxy calibrations.

[1]  U. Riebesell,et al.  Temperature Modulates Coccolithophorid Sensitivity of Growth, Photosynthesis and Calcification to Increasing Seawater pCO2 , 2014, PloS one.

[2]  G. Nehrke,et al.  A new model for biomineralization and trace-element signatures of Foraminifera tests , 2013 .

[3]  C. Brownlee,et al.  Dissecting the impact of CO2 and pH on the mechanisms of photosynthesis and calcification in the coccolithophore Emiliania huxleyi. , 2013, The New phytologist.

[4]  D. Wolf-Gladrow,et al.  Substrate supply for calcite precipitation in Emiliania huxleyi: assessment of different model approaches , 2013, Journal of phycology.

[5]  J. Raven,et al.  Environmental controls on coccolithophore calcification , 2012 .

[6]  P. Boyd,et al.  Understanding the responses of ocean biota to a complex matrix of cumulative anthropogenic change , 2012 .

[7]  C. Bolton,et al.  Vital effects in coccolith calcite: Cenozoic climate‐pCO2 drove the diversity of carbon acquisition strategies in coccolithophores? , 2012 .

[8]  Marius N. Müller,et al.  Influence of CO 2 and nitrogen limitation on the coccolith volume of Emiliania huxleyi (Haptophyta) , 2012 .

[9]  W. Vyverman,et al.  Phytoplankton community dynamics during late spring coccolithophore blooms at the continental margin of the Celtic Sea (North East Atlantic, 2006–2008) , 2012 .

[10]  Marius N. Müller,et al.  Removal of organic magnesium in coccolithophore calcite , 2012 .

[11]  N. Shimizu,et al.  B/Ca in coccoliths and relationship to calcification vesicle pH and dissolved inorganic carbon concentrations , 2012 .

[12]  U. Riebesell,et al.  Distinguishing between the effects of ocean acidification and ocean carbonation in the coccolithophore Emiliania huxleyi , 2011 .

[13]  G. Langer,et al.  Emiliania huxleyi shows identical responses to elevated pCO2 in TA and DIC manipulations , 2011 .

[14]  P. Ziveri,et al.  A universal carbonate ion effect on stable oxygen isotope ratios in unicellular planktonic calcifying organisms , 2011 .

[15]  J. Baker,et al.  Ecological and temperature controls on Mg/Ca ratios of Globigerina bulloides from the southwest Pacific Ocean , 2011 .

[16]  Marius N. Müller,et al.  Response of the coccolithophores Emiliania huxleyi and Coccolithus braarudii to changing seawater Mg2+ and Ca2+ concentrations: Mg/Ca, Sr/Ca ratios and δ44/40Ca, δ26/24Mg of coccolith calcite , 2011 .

[17]  Z. Rengel,et al.  Role of magnesium in alleviation of aluminium toxicity in plants. , 2011, Journal of experimental botany.

[18]  U. Riebesell,et al.  Effects of changes in carbonate chemistry speciation on Coccolithus braarudii: a discussion of coccolithophorid sensitivities , 2011 .

[19]  K. Ra,et al.  Mg isotopes in chlorophyll-a and coccoliths of cultured coccolithophores (Emiliania huxleyi) by MC-ICP-MS , 2010 .

[20]  C. Brownlee,et al.  Molecular Mechanisms Underlying Calcification in Coccolithophores , 2010 .

[21]  U. Riebesell,et al.  CO2 perturbation experiments: similarities and differences between dissolved inorganic carbon and total alkalinity manipulations , 2009 .

[22]  G. Dickens,et al.  Carbon dioxide forcing alone insufficient to explain Palaeocene–Eocene Thermal Maximum warming , 2009 .

[23]  G. Nehrke,et al.  Barium partitioning in coccoliths of Emiliania huxleyi , 2009 .

[24]  F. Mackenzie,et al.  Life on the margin: implications of ocean acidification on Mg-calcite, high latitude and cold-water marine calcifiers , 2008 .

[25]  Jianwu Tang,et al.  Sr2+/Ca2+ and 44Ca/40Ca fractionation during inorganic calcite formation: I. Sr incorporation , 2008 .

[26]  Marius N. Müller,et al.  E 2008, by the American Society of Limnology and Oceanography, Inc. Influence of cell cycle phase on calcification in the coccolithophore Emiliania huxleyi , 2022 .

[27]  D. Archer,et al.  Coccolithophore productivity response to greenhouse event of the Paleocene–Eocene Thermal Maximum , 2007 .

[28]  P. Ziveri,et al.  Relationship between coccolith Sr/Ca ratios and coccolithophore production and export in the Arabian Sea and Sargasso Sea , 2007 .

[29]  F. Mackenzie,et al.  Initial responses of carbonate-rich shelf sediments to rising atmospheric pCO2 and “ocean acidification”: Role of high Mg-calcites , 2006 .

[30]  E. Erba The first 150 million years history of calcareous nannoplankton : biosphere-geosphere interactions , 2006 .

[31]  J. Erez,et al.  Effect of Mg/Ca ratio in seawater on shell composition in shallow benthic foraminifera , 2006 .

[32]  U. Riebesell,et al.  Coccolith strontium to calcium ratios in Emiliania huxleyi: The dependence on seawater strontium and calcium concentrations , 2006 .

[33]  J. Zachos,et al.  Rapid Acidification of the Ocean During the Paleocene-Eocene Thermal Maximum , 2005, Science.

[34]  F. Meldrum,et al.  Structural and physiological effects of calcium and magnesium in Emiliania huxleyi (Lohmann) Hay and Mohler. , 2004, Journal of structural biology.

[35]  U. Riebesell,et al.  Effect of trace metal availability on coccolithophorid calcification , 2004, Nature.

[36]  F. Meldrum,et al.  The role of magnesium in stabilising amorphous calcium carbonate and controlling calcite morphologies , 2003 .

[37]  P. Falkowski,et al.  Climate proxies from Sr/Ca of coccolith calcite: calibrations from continuous culture of Emiliania huxleyi , 2002 .

[38]  D. Schrag,et al.  Growth rate dependence of Sr incorporation during calcification of Emiliania huxleyi , 2002 .

[39]  H. Elderfield,et al.  An intensity ratio calibration method for the accurate determination of Mg/Ca and Sr/Ca of marine carbonates by ICP‐AES , 2002 .

[40]  S. Luan,et al.  A Novel Family of Magnesium Transport Genes in Arabidopsis Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.010352. , 2001, The Plant Cell Online.

[41]  R. Haese,et al.  Continuous-flow analysis of dissolved inorganic carbon content in seawater. , 2001, Analytical chemistry.

[42]  D. Schrag,et al.  Sr/Ca variations in Cretaceous carbonates: relation to productivity and sea level changes , 2001 .

[43]  D. Schrag,et al.  Coccolith Sr/Ca as a new indicator of coccolithophorid calcification and growth rate , 2000 .

[44]  E. Matsumoto,et al.  Mg/Ca Thermometry in Coral Skeletons , 1996, Science.

[45]  N. Welschmeyer Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments , 1994 .

[46]  F. Millero,et al.  The dissociation constants of carbonic acid in seawater at salinities 5 to 45 and temperatures 0 to 45°C , 1993 .

[47]  Ulf Riebesell,et al.  Guide to best practices for ocean acidification research and data reporting , 2011 .

[48]  M. Gehlen,et al.  Effects of Ocean Acidification on Pelagic Organisms and Ecosystems , 2011 .

[49]  Ulf Riebesell,et al.  BOX 3. GUIDE TO BEST PRACTICES IN OCEAN ACIDIFICATION RESEARCH AND DATA REPORTING , 2009 .

[50]  P. Bown,et al.  Calcareous nannoplankton evolution and diversity through time , 2004 .

[51]  P. Ziveri,et al.  Coccolithophorid-based geochemical paleoproxies , 2004 .

[52]  A. Dickson,et al.  Reference materials for oceanic CO2 analysis: a method for the certification of total alkalinity , 2003 .

[53]  R. Guillard,et al.  Culture of Phytoplankton for Feeding Marine Invertebrates , 1975 .