Distributed intelligence for multi-camera visual surveillance

Latest advances in hardware technology and state of the art of computer vision and artificial intelligence research can be employed to develop autonomous and distributed monitoring systems. The paper proposes a multi-agent architecture for the understanding of scene dynamics merging the information streamed by multiple cameras. A typical application would be the monitoring of a secure site, or any visual surveillance application deploying a network of cameras. Modular software (the agents) within such architecture controls the different components of the system and incrementally builds a model of the scene by merging the information gathered over extended periods of time. The role of distributed artificial intelligence composed of separate and autonomous modules is justified by the need for scalable designs capable of co-operating to infer an optimal interpretation of the scene. Decentralizing intelligence means creating more robust and reliable sources of interpretation, but also allows easy maintenance and updating of the system. Results are presented to support the choice of a distributed architecture, and to prove that scene interpretation can be incrementally and efficiently built by modular software.

[1]  Rosalind W. Picard Aaective Computing , 1995 .

[2]  大西 仁,et al.  Pearl, J. (1988, second printing 1991). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan-Kaufmann. , 1994 .

[3]  Aaron F. Bobick,et al.  Parametric Hidden Markov Models for Gesture Recognition , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Keith D. Baker,et al.  Automatic Visual Surveillance of Vehicles and People , 1999 .

[5]  Agostino Poggi,et al.  Multiagent Systems , 2006, Intelligenza Artificiale.

[6]  Nicholas R. Jennings,et al.  Foundations of distributed artificial intelligence , 1996, Sixth-generation computer technology series.

[7]  Gerhard Weiss,et al.  Multiagent systems: a modern approach to distributed artificial intelligence , 1999 .

[8]  Tieniu Tan,et al.  Agent orientated annotation in model based visual surveillance , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[9]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[10]  Padhraic Smyth,et al.  A general probabilistic framework for clustering individuals and objects , 2000, KDD '00.

[11]  Carl Hewitt,et al.  Viewing Control Structures as Patterns of Passing Messages , 1977, Artif. Intell..

[12]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[13]  J. Pearl Causality: Models, Reasoning and Inference , 2000 .

[14]  Yoav Shoham,et al.  Agent-Oriented Programming , 1992, Artif. Intell..

[15]  Carlo S. Regazzoni,et al.  Advanced Video-Based Surveillance Systems , 1998 .

[16]  Aaron F. Bobick,et al.  A Framework for Recognizing Multi-Agent Action from Visual Evidence , 1999, AAAI/IAAI.

[17]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[18]  Manuela M. Veloso,et al.  Multiagent Systems: A Survey from a Machine Learning Perspective , 2000, Auton. Robots.

[19]  Alex Pentland,et al.  Coupled hidden Markov models for complex action recognition , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[20]  Tieniu Tan,et al.  Multi-agent visual surveillance of dynamic scenes , 1998, Image Vis. Comput..

[21]  Azriel Rosenfeld,et al.  Computer Vision , 1988, Adv. Comput..

[22]  N. Paragios,et al.  Video-Based Surveillance Systems: Computer Vision and Distributed Processing , 2001 .

[23]  Alberto RibesAbstract,et al.  Multi agent systems , 2019, Proceedings of the 2005 International Conference on Active Media Technology, 2005. (AMT 2005)..

[24]  Illtyd Trethowan Causality , 1938 .

[25]  George Stephanopoulos,et al.  Knowledge-Based System Applications in Engineering Design: Research at MIT , 1989, AI Mag..

[26]  P. Varshney,et al.  Multisensor surveillance systems : the fusion perspective , 2003 .

[27]  B. Ripley,et al.  Pattern Recognition , 1968, Nature.

[28]  Paolo Remagnino,et al.  An Agent Society for Scene Interpretation , 2000 .

[29]  Shaogang Gong,et al.  Visual Surveillance in a Dynamic and Uncertain World , 1995, Artif. Intell..

[30]  Rosalind W. Picard Affective Computing , 1997 .

[31]  Alex Pentland,et al.  A synthetic agent system for Bayesian modeling of human interactions , 1999, AGENTS '99.

[32]  Gerald W. Both,et al.  Object-oriented analysis and design with applications , 1994 .

[33]  Keith S. Decker,et al.  Distributed problem-solving techniques: A survey , 1987, IEEE Transactions on Systems, Man, and Cybernetics.

[34]  W. Eric L. Grimson,et al.  Learning Patterns of Activity Using Real-Time Tracking , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[35]  Gerhard Weiss,et al.  Multiagent Systems , 1999 .

[36]  Michael Wooldridge,et al.  Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence , 1999 .

[37]  H. Van Dyke Parunak,et al.  Applications of distributed artificial intelligence in industry , 1996 .

[38]  Paolo Remagnino,et al.  From connected components to object sequences , 2000 .

[39]  Katia P. Sycara,et al.  Distributed Intelligent Agents , 1996, IEEE Expert.

[40]  Junji Yamato,et al.  Recognizing human action in time-sequential images using hidden Markov model , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[41]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[42]  Eric Horvitz,et al.  Principles of mixed-initiative user interfaces , 1999, CHI '99.

[43]  Biing-Hwang Juang,et al.  Fundamentals of speech recognition , 1993, Prentice Hall signal processing series.

[44]  Jacques Ferber,et al.  Multi-agent systems - an introduction to distributed artificial intelligence , 1999 .

[45]  Matthew Brand,et al.  Structure Learning in Conditional Probability Models via an Entropic Prior and Parameter Extinction , 1999, Neural Computation.

[46]  Graeme A. Jones,et al.  Video surveillance tracking using colour region adjacency graphs , 1999 .

[47]  Gian Luca Foresti,et al.  Multimedia Video-Based Surveillance Systems: Requirements, Issues and Solutions , 2000 .

[48]  J. G. Semple,et al.  Algebraic Projective Geometry , 1953 .

[49]  Roger Y. Tsai,et al.  A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses , 1987, IEEE J. Robotics Autom..

[50]  Ira Rudowsky,et al.  Intelligent Agents , 2004, Commun. Assoc. Inf. Syst..