Periodic local MP2 method for the study of electronic correlation in crystals: Theory and preliminary applications

A computational technique for solving the MP2 equations for periodic systems using a local‐correlation approach and implemented in the CRYSCOR code is presented. The Hartree‐Fock solution provided by the CRYSTAL program is used as a reference. The motivations for the implementation of the new code are discussed, and the techniques adopted are briefly recalled. With respect to the original formulation (Pisani et al., J Chem Phys 2005, 122, 094113), many new features have been introduced in CRYSCOR to improve its efficiency and robustness. In particular, an adaptation of the density fitting scheme to translationally periodic systems is described, based on Fourier transformation techniques. Three examples of application are provided, concerning the CO2 crystal, proton transfer in ice XI, and the adsorption of methane on MgO (001). The results obtained with the periodic LMP2 method for these systems appear more reliable than the ones obtained using density functional theory. © 2008 Wiley Periodicals, Inc. J Comput Chem, 2008

[1]  F. Weigend Accurate Coulomb-fitting basis sets for H to Rn. , 2006, Physical chemistry chemical physics : PCCP.

[2]  Georg Hetzer,et al.  Low-order scaling local electron correlation methods. I. Linear scaling local MP2 , 1999 .

[3]  Ali Alavi,et al.  Molecular-dynamics simulation of methane adsorbed on MgO: Evidence for a Kosterlitz-Thouless transition , 1990 .

[4]  Frederick R. Manby,et al.  Fast linear scaling second-order Møller-Plesset perturbation theory (MP2) using local and density fitting approximations , 2003 .

[5]  Evert Jan Baerends,et al.  Self-consistent molecular Hartree—Fock—Slater calculations I. The computational procedure , 1973 .

[6]  Michael Dolg,et al.  Quantum chemical ab initio calculations of the magnetic interaction in alkalithioferrates(III) , 1997 .

[7]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[8]  Janos Ladik,et al.  Coupled-cluster studies. II. The role of localization in correlation calculations on extended systems , 1985 .

[9]  R. K. Nesbet,et al.  Electronic Correlation in Atoms and Molecules , 2007 .

[10]  A. D. Buckingham,et al.  The quadrupole moment of the carbon dioxide molecule , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[11]  Bobby G. Sumpter,et al.  Density functional investigation of the adsorption of a methane monolayer on an MgO(100) surface , 2006 .

[12]  W. H. Keesom,et al.  The lattice constant and expansion coefficient of solid carbon dioxide , 1934 .

[13]  Peter Pulay,et al.  Comparison of the boys and Pipek–Mezey localizations in the local correlation approach and automatic virtual basis selection , 1993, J. Comput. Chem..

[14]  Paulus,et al.  Electron correlations for ground-state properties of group-IV semiconductors. , 1995, Physical review. B, Condensed matter.

[15]  Christian Girard,et al.  Potential energy calculations for argon and methane adsorbed on MgO(001) substrate , 1987 .

[16]  Paul G. Mezey,et al.  A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions , 1989 .

[17]  Hans-Joachim Werner,et al.  Local treatment of electron correlation in coupled cluster theory , 1996 .

[18]  Peter Pulay,et al.  Orbital-invariant formulation and second-order gradient evaluation in Møller-Plesset perturbation theory , 1986 .

[19]  R Dovesi,et al.  Local-MP2 electron correlation method for nonconducting crystals. , 2005, The Journal of chemical physics.

[20]  Rodney J. Bartlett,et al.  Correlation energy estimates in periodic extended systems using the localized natural bond orbital coupled cluster approach , 2003 .

[21]  Hermann Stoll,et al.  Electron correlations in the ground state of diamond , 1982 .

[22]  Š. Varga,et al.  Density fitting of Coulomb integrals in electronic structure calculations of solids , 2005 .

[23]  Frederick R. Manby,et al.  Fast local-MP2 method with density-fitting for crystals. I. Theory and algorithms , 2007 .

[24]  Hermann Stoll,et al.  The correlation energy of crystalline silicon , 1992 .

[25]  Beate Paulus,et al.  INFLUENCE OF ELECTRON CORRELATIONS ON GROUND-STATE PROPERTIES OF III-V SEMICONDUCTORS , 1997 .

[26]  Janos Ladik,et al.  Numerical application of the coupled cluster theory with localized orbitals to polymers. IV. Band structure corrections in model systems and polyacetylene , 1997 .

[27]  O. Sǐnanoğlu,et al.  Many‐Electron Theory of Atoms, Molecules and Their Interactions , 2007 .

[28]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[29]  Stoll,et al.  Correlation energy of diamond. , 1992, Physical review. B, Condensed matter.

[30]  Holger Patzelt,et al.  RI-MP2: optimized auxiliary basis sets and demonstration of efficiency , 1998 .

[31]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[32]  Klaus Ruedenberg,et al.  Localized Atomic and Molecular Orbitals , 1963 .

[33]  Frederick R. Manby,et al.  The Poisson equation in density fitting for the Kohn-Sham Coulomb problem , 2001 .

[34]  C. Liegener,et al.  Third-order many-body perturbation theory in the Moller-Plesset partitioning applied to an infinite alternating hydrogen chain , 1985 .

[35]  E. Baerends,et al.  Precise density-functional method for periodic structures. , 1991, Physical review. B, Condensed matter.

[36]  Cesare Pisani,et al.  Proton ordered cubic and hexagonal periodic models of ordinary Ice , 2005 .

[37]  Rodney J. Bartlett,et al.  Second‐order many‐body perturbation‐theory calculations in extended systems , 1996 .

[38]  So Hirata,et al.  Analytical energy gradients in second-order Mo/ller–Plesset perturbation theory for extended systems , 1998 .

[39]  J. Connolly,et al.  On first‐row diatomic molecules and local density models , 1979 .

[40]  Beate Paulus,et al.  Ab initio incremental correlation treatment with non-orthogonal localized orbitals , 2003 .

[41]  Guntram Rauhut,et al.  Local Treatment of Electron Correlation in Molecular Clusters: Structures and Stabilities of (H2O)n, n = 2−4 , 1998 .

[42]  Joseph G. Hoffman,et al.  Quantum Theory of Atoms, Molecules and the Solid State: A Tribute to John C. Slater , 1967 .

[43]  Cesare Pisani,et al.  Beyond a Hartree–Fock description of crystalline solids: the case of lithium hydride , 2007 .

[44]  Brett I. Dunlap,et al.  Robust and variational fitting , 2000 .

[45]  Jozef Noga,et al.  Density fitting of two-electron integrals in extended systems with translational periodicity: the Coulomb problem. , 2006, The Journal of chemical physics.

[46]  Cesare Pisani,et al.  On the Prospective Use of the One-Electron Density Matrix as a Test of the Quality of Post-Hartree–Fock Schemes for Crystals , 2006 .

[47]  J. Pople,et al.  Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions , 1980 .

[48]  S. Casassa,et al.  Computational aspects of a local-MP2 treatment of electron correlation in periodic systems: SiC vs BeS , 2005 .

[49]  Stollhoff,et al.  Why polyacetylene dimerizes: Results of ab initio computations. , 1990, Physical review letters.

[50]  B. Asmussen,et al.  Rotational tunneling studies of methane films adsorbed on MgO: Crossover from two-to-three dimensions? , 1996 .

[51]  B. Deprick,et al.  A theoretical study of adsorption of CH4 on the (100) faces of MgO and NaCl , 1987 .

[52]  R. Dovesi,et al.  A general method to obtain well localized Wannier functions for composite energy bands in linear combination of atomic orbital periodic calculations , 2001 .

[53]  Beate Paulus,et al.  Convergence of the ab initio many-body expansion for the cohesive energy of solid mercury , 2004 .

[54]  Jan Almlöf,et al.  Elimination of energy denominators in Møller—Plesset perturbation theory by a Laplace transform approach , 1991 .

[55]  F. Weigend,et al.  Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations , 2002 .

[56]  Beate Paulus,et al.  Ab initio calculation of ground-state properties of rare-gas crystals. , 1999 .

[57]  So Hirata,et al.  Highly accurate treatment of electron correlation in polymers: Coupled-cluster and many-body perturbation theories , 2001 .

[58]  Knut J. Børve,et al.  Molecular adsorption of methane and methyl onto MgO(100) An embedded-cluster study , 1999 .

[59]  Beate Paulus,et al.  Ab initio coupled-cluster calculations for the fcc and hcp structures of rare-gas solids , 2000 .

[60]  C. Girardet,et al.  Potential surfaces and adsorption energy of Xe, CH4, N2, CO, NH3 and CH3F molecules on a MgO substrate , 1991 .

[61]  Philippe Y. Ayala,et al.  Atomic orbital Laplace-transformed second-order Møller–Plesset theory for periodic systems , 2001 .

[62]  Stefan Varga,et al.  Grid-free density functional calculations on periodic systems. , 2007, The Journal of chemical physics.

[63]  Michael Dolg,et al.  WAVE-FUNCTION-BASED CORRELATED AB INITIO CALCULATIONS ON CRYSTALLINE SOLIDS , 1999 .

[64]  Cesare Pisani,et al.  Symmetry-adapted Localized Wannier Functions Suitable for Periodic Local Correlation Methods , 2006 .

[65]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[66]  Frederick R. Manby,et al.  Fast local-MP2 method with density-fitting for crystals. II. Test calculations and application to the carbon dioxide crystal , 2007 .

[67]  Beate Paulus,et al.  Hydrogen bonding in the infinite hydrogen fluoride and hydrogen chloride chains , 2006 .

[68]  Beate Paulus,et al.  Towards an ab initio incremental correlation treatment for metals , 2003 .

[69]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[70]  G. Wannier The Structure of Electronic Excitation Levels in Insulating Crystals , 1937 .

[71]  Martin W. Feyereisen,et al.  Use of approximate integrals in ab initio theory. An application in MP2 energy calculations , 1993 .

[72]  Paulus,et al.  Cohesive energies of cubic III-V semiconductors. , 1996, Physical review. B, Condensed matter.

[73]  D. Richter,et al.  Rotational tunneling of methane on MgO surfaces: A neutron scattering study , 1991 .

[74]  So Hirata,et al.  Coupled-cluster singles and doubles for extended systems. , 2004, The Journal of chemical physics.

[75]  Richard C. Ward,et al.  The equilibrium low‐temperature structure of ice , 1985 .

[76]  Frederick R. Manby,et al.  Linear scaling local coupled cluster theory with density fitting. Part I: 4-external integrals , 2003 .

[77]  Jung,et al.  Dynamics and kinetics of monolayer CH4 on MgO(001) studied by helium-atom scattering. , 1991, Physical review. B, Condensed matter.

[78]  Roberto Dovesi,et al.  Ab initio approach to molecular crystals: A periodic Hartree–Fock study of crystalline urea , 1990 .

[79]  Doll,et al.  Correlation effects in ionic crystals: The cohesive energy of MgO. , 1995, Physical review. B, Condensed matter.

[80]  Alavi Evidence for a Kosterlitz-Thouless transition in a simulation of CD4 adsorbed on MgO. , 1990, Physical review letters.

[81]  Suhai Electron correlation in extended systems: Fourth-order many-body perturbation theory and density-functional methods applied to an infinite chain of hydrogen atoms. , 1994, Physical review. B, Condensed matter.

[82]  Chick C. Wilson,et al.  Single-Crystal Neutron Diffraction Studies of the Structure of Ice XI , 1997 .

[83]  Michael Dolg,et al.  QUANTUM CHEMICAL APPROACH TO COHESIVE PROPERTIES OF NIO , 1997 .