Weak Quantum Theory: Formal Framework and Selected Applications

Two key concepts of quantum theory, complementarity and entanglement, are considered with respect to their significance in and beyond physics. An axiomatically formalized, weak version of quantum theory, more general than the ordinary quantum theory of physical systems, is described. Its mathematical structure generalizes the algebraic approach to ordinary quantum theory. The crucial formal feature leading to complementarity and entanglement is the non‐commutativity of observables.The ordinary Hilbert space quantum mechanics can be recovered by stepwise adding the necessary features. This provides a hierarchy of formal frameworks of decreasing generality and increasing specificity. Two concrete applications, more specific than weak quantum theory and more general than ordinary quantum theory, are discussed: (i) complementarity and entanglement in classical dynamical systems, and (ii) complementarity and entanglement in the bistable perception of ambiguous stimuli.

[1]  Hans Primas,et al.  Mathematical and Philosophical Questions in the Theory of Open and Macroscopic Quantum Systems , 1990 .

[2]  Mario Bunge,et al.  Philosophy of Physics , 1972 .

[3]  Celso Grebogi,et al.  Pseudo-Deterministic Chaotic Systems , 2003, Int. J. Bifurc. Chaos.

[4]  H. Primas Chemistry, Quantum Mechanics and Reductionism , 1981 .

[5]  Karl Landauer,et al.  Vorlesungen zur Einführung in die Psychoanalyse , 1933 .

[6]  H. Primas,et al.  The Hidden Side of Wolfgang Pauli , 1995 .

[7]  Massimo Riani,et al.  Stochastic Models and Fluctuations in Reversal Time of Ambiguous Figures , 1977, Perception.

[8]  Harald Atmanspacher,et al.  Epistemic and Ontic Quantum Realities , 2003 .

[9]  Marc Lefranc,et al.  From template analysis to generating partitions II: characterization of the symbolic encodings , 1999, chao-dyn/9907030.

[10]  P. Grassberger,et al.  Estimation of the Kolmogorov entropy from a chaotic signal , 1983 .

[11]  Harald Atmanspacher,et al.  Dynamical Entropy in Dynamical Systems , 1997 .

[12]  H.Atmanspacher,et al.  Weak Quantum Theory: Complementarity and Entanglement in Physics and Beyond , 2001, quant-ph/0104109.

[13]  Eva Ruhnau The Now — A Hidden Window to Dynamics , 1994 .

[14]  H. Atmanspacher,et al.  A Propositional Lattice for the Logic of Temporal Predictions , 1991 .

[15]  Constantin Virgil Negoiţă,et al.  The State Space Approach , 1979 .

[16]  G. Roger,et al.  Experimental Test of Bell's Inequalities Using Time- Varying Analyzers , 1982 .

[17]  Roger H. Stuewer,et al.  Niels Bohr's Times: In Physics, Philosophy, and Polity , 1991 .

[18]  D Gernert,et al.  Towards a closed description of observation processes. , 2000, Bio Systems.

[19]  Robert Shaw Strange Attractors, Chaotic Behavior, and Information Flow , 1981 .

[20]  D. Carroll,et al.  Variation in the placebo effect in randomised controlled trials of analgesics: all is as blind as it seems , 1996, Pain.

[21]  D. Spalding The Principles of Psychology , 1873, Nature.

[22]  Abraham Paiz,et al.  Niels Bohr’s Times, in Physics, Philosophy, and Polity , 1992 .

[23]  James T. Cushing,et al.  Niels Bohr's Philosophy of Physics , 1987 .

[24]  Marc Lefranc,et al.  From template analysis to generating partitions I: periodic orbits, knots and symbolic encodings , 1999, chao-dyn/9907029.

[25]  Harald Atmanspacher,et al.  Incommensurability of Liouvillean Dynamics and Information Dynamics , 1989, Parallelism, Learning, Evolution.

[26]  R. Haag,et al.  Local quantum physics , 1992 .

[27]  H. Walach,et al.  Is the placebo effect dependent on time? A meta-analysis. , 1999 .

[28]  D. Rao,et al.  A State-Space Approach , 2006 .

[29]  N. Bohr,et al.  On the notions of causality and complementarity. , 1950, Science.

[30]  C. Piron,et al.  On the Foundations of Quantum Physics , 1976 .

[31]  J. Fell Identifying neural correlates of consciousness: The state space approach , 2004, Consciousness and Cognition.

[32]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[33]  Harald Atmanspacher,et al.  Discrimination and Sequentialization of Events in Perception , 2003 .

[34]  W. Freeman,et al.  How brains make chaos in order to make sense of the world , 1987, Behavioral and Brain Sciences.

[35]  Harald Atmanspacher,et al.  Contextual Emergence from Physics to Cognitive Neuroscience , 2007 .

[36]  I Prigogine,et al.  From deterministic dynamics to probabilistic descriptions. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[37]  D. R. Murdoch Niels Bohr's philosophy of physics: Bohr's philosophy of physics , 1987 .

[38]  K. Meyer-abich Bohr’s Complementarity and Goldstein’s Holism in Reflective Pragmatism , 2004 .

[39]  B. Misra,et al.  Nonequilibrium entropy, Lyapounov variables, and ergodic properties of classical systems. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[40]  I. Kirsch,et al.  Listening to Prozac but Hearing Placebo: A Meta-Analysis of Antidepressant Medication , 1998 .

[41]  N. Bohr The Quantum Postulate and the Recent Development of Atomic Theory , 1928, Nature.

[42]  H. Atmanspacher,et al.  Complementarity in Classical Dynamical Systems , 2006 .

[43]  Sigmund Freud,et al.  Vorlesungen zur Einführung in die Psychoanalyse , 1916 .

[44]  H. Dishkant,et al.  Logic of Quantum Mechanics , 1976 .

[45]  Harald Atmanspacher,et al.  A fundamental link between system theory and statistical mechanics , 1987 .

[46]  Raymond van Ee,et al.  Distributions of alternation rates in various forms of bistable perception. , 2005, Journal of vision.

[47]  Gerald Holton,et al.  The Roots of Complementarity. , 1970 .

[48]  E. Sudarshan,et al.  Zeno's paradox in quantum theory , 1976 .

[49]  Erhard Scheibe,et al.  The Logical Analysis of Quantum Mechanics , 1974 .

[50]  W. Thirring,et al.  Quantum mechanics of atoms and molecules , 1981 .

[51]  Harald Atmanspacher,et al.  Quantum Zeno features of bistable perception , 2003, Biological Cybernetics.

[52]  Abraham Pais,et al.  Niels Bohr's times , 1991 .

[53]  W. Pauli Naturwissenschaftliche und erkenntnistheoretische Aspekte der Ideen vom Unbewußten , 1954 .

[54]  H. Walach,et al.  Complementarity is a useful concept for consciousness studies. A Reminder. , 2000, Neuro endocrinology letters.

[55]  R. Bowen,et al.  MARKOV PARTITIONS FOR AXIOM A DIFFEOMORPHISMS. , 1970 .

[56]  Karl Gustafson,et al.  Canonical commutation relations of quantum mechanics and stochastic regularity , 1976 .

[57]  Grebogi,et al.  Shadowing of physical trajectories in chaotic dynamics: Containment and refinement. , 1990, Physical review letters.

[58]  Harald Atmanspacher,et al.  Ontic and epistemic descriptions of chaotic systems , 2001 .

[59]  M. Chiara,et al.  Philosophy of quantum mechanics , 1982 .

[60]  I. Prigogine,et al.  Irreversibility and nonlocality , 1983 .

[61]  H. Atmanspacher,et al.  Weak Quantum Theory: Complementarity and Entanglement in Physics and Beyond , 2001 .

[62]  E. Pöppel The Brain’s Way to Create “Nowness” , 1997 .

[63]  Ronald Olson,et al.  Reversibility of the Necker Cube: VII. Reversal Rate as a Function of Figure-on and Figure-off Durations , 1966 .

[64]  Harald Atmanspacher,et al.  Mind and matter as asymptotically disjoint, inequivalent representations with broken time-reversal symmetry. , 2003, Bio Systems.

[65]  Ernst Plaum,et al.  Bohrs quantentheoretische Naturbeschreibung und die Psychologie , 1992 .

[66]  E. Schrödinger Die gegenwärtige Situation in der Quantenmechanik , 2005, Naturwissenschaften.

[67]  D. TjØstheim,et al.  A Commutation Relation for Wide Sense Stationary Processes , 1976 .

[68]  Henry P. Stapp,et al.  Attention, Intention, and Will in Quantum Physics , 1999, quant-ph/9905054.