Microscopic origin of coercivity enhancement by dysprosium substitution into neodymium permanent magnets

[1]  S. Miyashita,et al.  Atomistic theory of thermally activated magnetization processes in Nd2Fe14B permanent magnet , 2021, Science and technology of advanced materials.

[2]  T. Miyake,et al.  Understanding and optimization of hard magnetic compounds from first principles , 2021, Science and technology of advanced materials.

[3]  S. Miyashita,et al.  Role of atomic-scale thermal fluctuations in the coercivity , 2020, npj Computational Materials.

[4]  Masaaki Ito,et al.  Atomistic simulations of α-Fe/Nd2Fe14B magnetic core/shell nanocomposites with enhanced energy product for high temperature permanent magnet applications , 2020 .

[5]  M. Yi,et al.  Anisotropic exchange in Nd–Fe–B permanent magnets , 2019, Materials Research Letters.

[6]  K. Hono,et al.  Microstructure and coercivity of grain boundary diffusion processed Dy-free and Dy-containing Nd Fe B sintered magnets , 2019, Acta Materialia.

[7]  R. Chantrell,et al.  Multiscale model approaches to the design of advanced permanent magnets , 2018 .

[8]  M. Chen,et al.  Grain boundary diffusion of Dy films prepared by magnetron sputtering for sintered Nd–Fe–B magnets , 2018 .

[9]  S. Miyashita,et al.  Perspectives of stochastic micromagnetism of Nd2Fe14B and computation of thermally activated reversal process , 2017, Scripta Materialia.

[10]  E. Mehofer,et al.  Searching the weakest link: Demagnetizing fields and magnetization reversal in permanent magnets , 2017, Scripta Materialia.

[11]  S. Banerjee,et al.  Angular dependence of magnetization reversal in epitaxial chromium telluride thin films with perpendicular magnetic anisotropy , 2017, 1705.03121.

[12]  Satoshi Hirosawa,et al.  Perspectives for high-performance permanent magnets: applications, coercivity, and new materials , 2017 .

[13]  S. Okamoto,et al.  Temperature-dependent magnetization reversal process and coercivity mechanism in Nd-Fe-B hot-deformed magnets , 2015 .

[14]  A. L. Wysocki,et al.  Micromagnetic simulations with periodic boundary conditions: Hard-soft nanocomposites , 2015, 1510.08543.

[15]  T. Schrefl,et al.  Thermal Activation in Permanent Magnets , 2015, 1603.08365.

[16]  O. Gutfleisch,et al.  Temperature-dependent Dy diffusion processes in Nd–Fe–B permanent magnets , 2015 .

[17]  Jun Liu,et al.  High-coercivity hot-deformed Nd–Fe–B permanent magnets processed by Nd–Cu eutectic diffusion under expansion constraint , 2014 .

[18]  Y. Miura,et al.  Magnetocrystalline anisotropy of the Fe-sublattice in Y2Fe14B systems , 2014 .

[19]  Jian-sheng Wu,et al.  Grain boundary microstructure in DyF3-diffusion processed Nd–Fe–B sintered magnets , 2011 .

[20]  S. Sugimoto,et al.  Current status and recent topics of rare-earth permanent magnets , 2011 .

[21]  M. Sagawa,et al.  Analysis of the magnetic hardening mechanism in RE-FeB permanent magnets , 1988 .

[22]  V. A. Gubanov,et al.  Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys , 1987 .

[23]  M. Sagawa,et al.  Magnetocrystalline anisotropy in Nd2Fe14B intermetallic compound , 1986 .

[24]  Satoshi Hirosawa,et al.  Magnetization and magnetic anisotropy of R2Fe14B measured on single crystals , 1986 .