Lyapunov Stability Analysis for Incommensurate Nabla Fractional Order Systems

[1]  Yiheng Wei Time-varying Lyapunov functions for nonautonomous nabla fractional order systems. , 2021, ISA transactions.

[2]  Yiheng Wei,et al.  Fractional difference inequalities with their implications to the stability analysis of nabla fractional order systems , 2021, Nonlinear Dynamics.

[3]  Jinde Cao,et al.  Synchronization in finite time for variable-order fractional complex dynamic networks with multi-weights and discontinuous nodes based on sliding mode control strategy , 2021, Neural Networks.

[4]  Yiheng Wei,et al.  Lyapunov Stability Theory for Nonlinear Nabla Fractional Order Systems , 2021, IEEE Transactions on Circuits and Systems II: Express Briefs.

[5]  Cong Wu Comments on “Stability analysis of Caputo fractional-order nonlinear systems revisited” , 2021, Nonlinear Dynamics.

[6]  Yiheng Wei,et al.  Converse Lyapunov Theorem for Nabla Asymptotic Stability Without Conservativeness , 2021, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[7]  Qing-Long Han,et al.  Practical Fixed-Time Bipartite Consensus of Nonlinear Incommensurate Fractional-Order Multiagent Systems in Directed Signed Networks , 2020, SIAM J. Control. Optim..

[8]  Mohammad Hassan Asemani,et al.  On robust stability of incommensurate fractional-order systems , 2020, Commun. Nonlinear Sci. Numer. Simul..

[9]  Mai Viet Thuan,et al.  New Results on H∞ Control for Nonlinear Conformable Fractional Order Systems , 2020, J. Syst. Sci. Complex..

[10]  Zhang Jing,et al.  Asymptotic stabilization of general nonlinear fractional-order systems with multiple time delays , 2020, Nonlinear Dynamics.

[11]  Jinde Cao,et al.  Global leader-following consensus in finite time for fractional-order multi-agent systems with discontinuous inherent dynamics subject to nonlinear growth , 2020 .

[12]  L. A. Quezada-Téllez,et al.  On stability of nonlinear nonautonomous discrete fractional Caputo systems , 2020 .

[13]  Yiheng Wei,et al.  Mittag–Leffler stability of nabla discrete fractional-order dynamic systems , 2020, Nonlinear Dynamics.

[14]  Vahid Badri,et al.  Non-Uniform Reducing the Involved Differentiators’ Orders and Lyapunov Stability Preservation Problem in Dynamic Systems , 2020, IEEE Transactions on Circuits and Systems II: Express Briefs.

[15]  N. Maamri,et al.  Analysis, Modeling and Stability of Fractional Order Differential Systems 2 , 2019 .

[16]  Dinh Cong Huong,et al.  Robust Finite-Time Stability and Stabilization of a Class of Fractional-Order Switched Nonlinear Systems , 2019, J. Syst. Sci. Complex..

[17]  Shu Liang,et al.  Inverse Lyapunov Theorem for Linear Time Invariant Fractional Order Systems , 2019, Journal of Systems Science and Complexity.

[18]  Zhigang Zeng,et al.  Global Asymptotic Stability and Adaptive Ultimate Mittag–Leffler Synchronization for a Fractional-Order Complex-Valued Memristive Neural Networks With Delays , 2019, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[19]  Xinzhi Liu,et al.  Lyapunov and external stability of Caputo fractional order switching systems , 2019, Nonlinear Analysis: Hybrid Systems.

[20]  Yong Wang,et al.  Modelling and simulation of nabla fractional dynamic systems with nonzero initial conditions , 2019, Asian Journal of Control.

[21]  Yuquan Chen,et al.  Analysis and description of the infinite-dimensional nature for nabla discrete fractional order systems , 2019, Commun. Nonlinear Sci. Numer. Simul..

[22]  Vahid Badri,et al.  Stability analysis of fractional order time‐delay systems: constructing new Lyapunov functions from those of integer order counterparts , 2019, IET Control Theory & Applications.

[23]  M. Duarte-Mermoud,et al.  Converse theorems in Lyapunov’s second method and applications for fractional order systems , 2019, TURKISH JOURNAL OF MATHEMATICS.

[24]  A. Peterson,et al.  Stability analysis for a class of nabla (q; h)-fractional difference equations , 2019, TURKISH JOURNAL OF MATHEMATICS.

[25]  Yong Wang,et al.  Modelling and simulation of nabla fractional dynamic systems with nonzero initial conditions , 2019, Asian Journal of Control.

[26]  Yuquan Chen,et al.  Fractional order chattering-free robust adaptive backstepping control technique , 2019, Nonlinear Dynamics.

[27]  Yiheng Wei,et al.  Generalization of the gradient method with fractional order gradient direction , 2018, J. Frankl. Inst..

[28]  YangQuan Chen,et al.  A new collection of real world applications of fractional calculus in science and engineering , 2018, Commun. Nonlinear Sci. Numer. Simul..

[29]  Yuquan Chen,et al.  A note on short memory principle of fractional calculus , 2017 .

[30]  Dumitru Baleanu,et al.  Lyapunov functions for Riemann-Liouville-like fractional difference equations , 2017, Appl. Math. Comput..

[31]  Dumitru Baleanu,et al.  Stability analysis of Caputo-like discrete fractional systems , 2017, Commun. Nonlinear Sci. Numer. Simul..

[32]  Ahmed Alsaedi,et al.  A survey of useful inequalities in fractional calculus , 2017 .

[33]  Yuquan Chen,et al.  Stability for nonlinear fractional order systems: an indirect approach , 2017 .

[34]  Dian Sheng,et al.  Adaptive backstepping control for fractional order systems with input saturation , 2017, J. Frankl. Inst..

[35]  Weisheng Chen,et al.  New power law inequalities for fractional derivative and stability analysis of fractional order systems , 2017 .

[36]  Weisheng Chen,et al.  Convex Lyapunov functions for stability analysis of fractional order systems , 2017 .

[37]  Yongping Pan,et al.  Adaptive Fuzzy Backstepping Control of Fractional-Order Nonlinear Systems , 2017, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[38]  Ahmad Hajipour,et al.  Synchronization of chaotic Arneodo system of incommensurate fractional order with unknown parameters using adaptive method , 2016 .

[39]  Wei Jiang,et al.  Asymptotical stability of Riemann–Liouville fractional nonlinear systems , 2016, Nonlinear Dynamics.

[40]  Yongguang Yu,et al.  Mittag-Leffler stability of fractional-order Hopfield neural networks , 2015 .

[41]  Manuel A. Duarte-Mermoud,et al.  Lyapunov functions for fractional order systems , 2014, Commun. Nonlinear Sci. Numer. Simul..

[42]  Ewa Girejko,et al.  Stability of discrete fractional-order nonlinear systems with the nabla Caputo difference , 2013 .

[43]  D. Baleanu,et al.  Stability analysis of Caputo fractional-order nonlinear systems revisited , 2011, Nonlinear Dynamics.

[44]  Yangquan Chen,et al.  Computers and Mathematics with Applications Stability of Fractional-order Nonlinear Dynamic Systems: Lyapunov Direct Method and Generalized Mittag–leffler Stability , 2022 .

[45]  Igor Podlubny,et al.  Mittag-Leffler stability of fractional order nonlinear dynamic systems , 2009, Autom..

[46]  Alain Oustaloup,et al.  A Lyapunov approach to the stability of fractional differential equations , 2009, Signal Process..

[47]  Dinh Cong Huong,et al.  New Results on Stability and Stabilization of Delayed Caputo Fractional Order Systems with Convex Polytopic Uncertainties , 2020, J. Syst. Sci. Complex..

[48]  P. Eloe,et al.  MITTAG-LEFFLER STABILITY OF SYSTEMS OF FRACTIONAL NABLA DIFFERENCE EQUATIONS , 2019 .

[49]  Omar Naifar,et al.  Comments on "Mittag-Leffler stability of fractional order nonlinear dynamic systems [Automatica 45(8) (2009) 1965-1969]" , 2017, Autom..

[50]  Dorota Mozyrska,et al.  On Mittag-Leffler Stability of Fractional Order Difference Systems , 2014, RRNR.