Magnetic Particle Imaging With Tailored Iron Oxide Nanoparticle Tracers

Magnetic particle imaging (MPI) shows promise for medical imaging, particularly in angiography of patients with chronic kidney disease. As the first biomedical imaging technique that truly depends on nanoscale materials properties, MPI requires highly optimized magnetic nanoparticle tracers to generate quality images. Until now, researchers have relied on tracers optimized for MRI T2*-weighted imaging that are sub-optimal for MPI. Here, we describe new tracers tailored to MPI's unique physics, synthesized using an organic-phase process and functionalized to ensure biocompatibility and adequate in vivo circulation time. Tailored tracers showed up to 3 × greater signal-to-noise ratio and better spatial resolution than existing commercial tracers in MPI images of phantoms.

[1]  B Gleich,et al.  Three-dimensional real-time in vivo magnetic particle imaging , 2009, Physics in medicine and biology.

[2]  Bernhard Gleich,et al.  Micro-magnetic simulation study on the magnetic particle imaging performance of anisotropic mono-domain particles , 2012, Physics in medicine and biology.

[3]  Emine Ulku Saritas,et al.  X‐Space MPI: Magnetic Nanoparticles for Safe Medical Imaging , 2012, Advanced materials.

[4]  Thorsten M Buzug,et al.  Experimental generation of an arbitrarily rotated field-free line for the use in magnetic particle imaging. , 2011, Medical physics.

[5]  Kannan M Krishnan,et al.  Tailored magnetic nanoparticles for optimizing magnetic fluid hyperthermia. , 2012, Journal of biomedical materials research. Part A.

[6]  Volker Behr und Peter Jakob Magnetic particle imaging. , 2015, Zeitschrift fur medizinische Physik.

[7]  Thorsten M. Buzug,et al.  System Calibration Unit for Magnetic Particle Imaging: Focus Field Based System Function , 2012 .

[8]  B Gleich,et al.  A simulation study on the resolution and sensitivity of magnetic particle imaging , 2007, Physics in medicine and biology.

[9]  Jürgen Rahmer,et al.  Rapid 3D in vivo Magnetic Particle Imaging with a Large Field of View , 2011 .

[10]  R. Pazdur,et al.  FDA report: Ferumoxytol for intravenous iron therapy in adult patients with chronic kidney disease , 2010, American journal of hematology.

[11]  Ondrej Hovorka,et al.  Tailoring the magnetic and pharmacokinetic properties of iron oxide magnetic particle imaging tracers , 2013, Biomedizinische Technik. Biomedical engineering.

[12]  Florian M Vogt,et al.  Magnetic resonance imaging of experimental atherosclerotic plaque: Comparison of two ultrasmall superparamagnetic particles of iron oxide , 2006, Journal of magnetic resonance imaging : JMRI.

[13]  Patrick W. Goodwill,et al.  Linearity and Shift Invariance for Quantitative Magnetic Particle Imaging , 2013, IEEE Transactions on Medical Imaging.

[14]  Thorsten M. Buzug,et al.  Generation of a static magnetic field-free line using two Maxwell coil pairs , 2010 .

[15]  Jochen Franke,et al.  On the formulation of the image reconstruction problem in magnetic particle imaging , 2013, Biomedizinische Technik. Biomedical engineering.

[16]  Bo Zheng,et al.  An x-space magnetic particle imaging scanner. , 2012, The Review of scientific instruments.

[17]  Justin J. Konkle,et al.  Third Generation X-Space MPI Mouse and Rat Scanner , 2012 .

[18]  Thorsten M. Buzug,et al.  Magnetization response spectroscopy of superparamagnetic nanoparticles for magnetic particle imaging , 2009 .

[19]  Jeff W M Bulte,et al.  In vivo MRI cell tracking: clinical studies. , 2009, AJR. American journal of roentgenology.

[20]  Patrick W. Goodwill,et al.  The X-Space Formulation of the Magnetic Particle Imaging Process: 1-D Signal, Resolution, Bandwidth, SNR, SAR, and Magnetostimulation , 2010, IEEE Transactions on Medical Imaging.

[21]  Bo Zheng,et al.  Quantitative stem cell imaging with magnetic particle imaging , 2013, 2013 International Workshop on Magnetic Particle Imaging (IWMPI).

[22]  Kannan M Krishnan,et al.  Tracer design for magnetic particle imaging (invited). , 2012, Journal of applied physics.

[23]  R. Katzberg,et al.  Contrast-induced nephrotoxicity: clinical landscape. , 2006, Kidney international. Supplement.

[24]  Bernhard Gleich,et al.  Analysis of a 3-D System Function Measured for Magnetic Particle Imaging , 2012, IEEE Transactions on Medical Imaging.

[25]  Bernhard Gleich,et al.  Signal encoding in magnetic particle imaging: properties of the system function , 2009, BMC Medical Imaging.

[26]  Bernhard Gleich,et al.  Tomographic imaging using the nonlinear response of magnetic particles , 2005, Nature.

[27]  Bernhard Gleich,et al.  Point Spread Function Analysis of Magnetic Particles , 2012 .

[28]  Patrick W. Goodwill,et al.  Multidimensional X-Space Magnetic Particle Imaging , 2011, IEEE Transactions on Medical Imaging.

[29]  Bo Zheng,et al.  Projection X-Space Magnetic Particle Imaging , 2012, IEEE Transactions on Medical Imaging.

[30]  Bernhard Gleich,et al.  Magnetic particle imaging using a field free line , 2008 .

[31]  Keiji Enpuku,et al.  Characterization of Resovist® Nanoparticles for Magnetic Particle Imaging , 2012 .

[32]  Jürgen Rahmer,et al.  Fast MPI Demonstrator with Enlarged Field of View , 2010 .

[33]  Paula M Jacobs,et al.  Ultrasmall superparamagnetic iron oxides (USPIOs): a future alternative magnetic resonance (MR) contrast agent for patients at risk for nephrogenic systemic fibrosis (NSF)? , 2009, Kidney international.

[34]  Lutz Trahms,et al.  How the size distribution of magnetic nanoparticles determines their magnetic particle imaging performance , 2011 .

[35]  O. Woywode,et al.  Fast continuous motion of the field of view in magnetic particle imaging , 2013, 2013 International Workshop on Magnetic Particle Imaging (IWMPI).

[36]  Kevin R Minard,et al.  Optimization of nanoparticle core size for magnetic particle imaging. , 2009, Journal of magnetism and magnetic materials.

[37]  A. Djamali,et al.  Nephrogenic systemic fibrosis: risk factors and incidence estimation. , 2007, Radiology.

[38]  Kannan M. Krishnan,et al.  Monodisperse magnetite nanoparticle tracers for in vivo magnetic particle imaging. , 2013, Biomaterials.

[39]  J. Kanzenbach,et al.  Rapid 3 D in vivo Magnetic Particle Imaging with a Large Field of View , 2010 .

[40]  K. Krishnan Biomedical Nanomagnetics: A Spin Through Possibilities in Imaging, Diagnostics, and Therapy , 2010, IEEE Transactions on Magnetics.

[41]  Thorsten M. Buzug,et al.  Model-Based Reconstruction for Magnetic Particle Imaging , 2010, IEEE Transactions on Medical Imaging.

[42]  Kevin R Minard,et al.  Optimizing magnetite nanoparticles for mass sensitivity in magnetic particle imaging. , 2011, Medical physics.

[43]  Patrick W. Goodwill,et al.  Ferrohydrodynamic relaxometry for magnetic particle imaging , 2011 .