Subspace identification for FDI in systems with non-uniformly sampled multirate data

This paper proposes a novel subspace approach towards direct identification of a residual model for fault detection and isolation (FDI) in a system with non-uniformly sampled multirate (NUSM) data without any knowledge of the system. From the identified residual model, an optimal primary residual vector (PRV) is generated for fault detection. Furthermore, by transforming the PRV into a set of structured residual vectors, fault isolation is performed. The proposed algorithms have been applied to an experimental pilot plant with NUSM data for sensor FDI, where different types of faults are successfully detected and isolated, fully validating the practicality and utility of the developed theory.

[1]  Sirish L. Shah,et al.  Adaptive multirate state and parameter estimation strategies with application to a bioreactor , 1995 .

[2]  Sirish L. Shah,et al.  Generalized predictive control for non-uniformly sampled systems , 2002 .

[3]  M. S. Fadali,et al.  Observer-based robust fault detection for a class of multirate sampled-data linear systems , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[4]  Dongguang Li,et al.  Identification of fast-rate models from multirate data , 2001 .

[5]  Calyampudi R. Rao The use and interpretation of principal component analysis in applied research , 1964 .

[6]  M. S. Fadali,et al.  Fault detection for systems with multirate sampling , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[7]  B. De Moor,et al.  Two subspace algorithms for the identification of combined deterministic-stochastic systems , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[8]  Michel Verhaegen,et al.  Subspace Algorithms for the Identification of Multivariable Dynamic Errors-in-Variables Models , 1997, Autom..

[9]  Sirish L. Shah,et al.  Fault Detection and Isolation in Non-Uniformly Sampled Systems , 2004 .

[10]  Weihua Li,et al.  Subspace identification of continuous time models for process fault detection and isolation , 2003 .

[11]  E. Camacho,et al.  Generalized Predictive Control , 2007 .

[12]  T. Söderström,et al.  Instrumental variable methods for system identification , 1983 .

[13]  K. Poolla,et al.  Robust control of linear time-invariant plants using periodic compensation , 1985 .

[14]  A. Willsky,et al.  Analytical redundancy and the design of robust failure detection systems , 1984 .

[15]  K. Lim,et al.  Generalized Predictive Control of , 2022 .

[16]  Sirish L. Shah,et al.  Structured residual vector-based approach to sensor fault detection and isolation , 2002 .

[17]  Richard A. Johnson,et al.  Applied Multivariate Statistical Analysis , 1983 .

[18]  B. De Moor,et al.  A unifying theorem for three subspace system identification algorithms , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[19]  G. Kranc,et al.  Input-output analysis of multirate feedback systems , 1957 .

[20]  Bart De Moor,et al.  A unifying theorem for three subspace system identification algorithms , 1995, Autom..

[21]  Guizeng Wang,et al.  Fault detection for multirate sampled-data systems with time delays , 2002 .

[22]  P. Holmes,et al.  Suppression of bursting , 1997, Autom..

[23]  M. S. Fadali,et al.  Timely robust fault detection for multirate linear systems , 2002 .

[24]  Bart De Moor,et al.  N4SID: Subspace algorithms for the identification of combined deterministic-stochastic systems , 1994, Autom..

[25]  Gene H. Golub,et al.  Some modified matrix eigenvalue problems , 1973, Milestones in Matrix Computation.

[26]  Takashi Yoneyama,et al.  Multi-rate Multivariable Model Predictive Control and Its Application to a Semi-Commercial Polymerization Reactor , 1992, 1992 American Control Conference.