Characterization of Arabidopsis serine:glyoxylate aminotransferase, AGT1, as an asparagine aminotransferase.

[1]  A. Fernie,et al.  Two alanine aminotranferases link mitochondrial glycolate oxidation to the major photorespiratory pathway in Arabidopsis and rice , 2012, Journal of experimental botany.

[2]  Role of asparaginase variable loop at the carboxyl terminal of the alpha subunit in the determination of substrate preference in plants , 2012, Planta.

[3]  R. Beyaert,et al.  Arabidopsis mutants lacking asparaginases develop normally but exhibit enhanced root inhibition by exogenous asparagine , 2011, Amino Acids.

[4]  Andreas Wilke,et al.  Synergistic use of plant-prokaryote comparative genomics for functional annotations , 2011, BMC Genomics.

[5]  A. Rasmusson,et al.  Distinct signalling pathways and transcriptome response signatures differentiate ammonium- and nitrate-supplied plants. , 2010, Plant, cell & environment.

[6]  K. Voigt,et al.  Molecular identification of fungi. , 2010 .

[7]  Y. Tsay,et al.  CHL1 Functions as a Nitrate Sensor in Plants , 2009, Cell.

[8]  M. Veiga-da-Cunha,et al.  Molecular identification of omega-amidase, the enzyme that is functionally coupled with glutamine transaminases, as the putative tumor suppressor Nit2. , 2009, Biochimie.

[9]  K. Huebner,et al.  Identification of the putative tumor suppressor Nit2 as omega-amidase, an enzyme metabolically linked to glutamine and asparagine transamination. , 2009, Biochimie.

[10]  Rongchen Wang,et al.  A Genetic Screen for Nitrate Regulatory Mutants Captures the Nitrate Transporter Gene NRT1.11[W][OA] , 2009, Plant Physiology.

[11]  K. Kielland,et al.  Uptake of organic nitrogen by plants. , 2009, The New phytologist.

[12]  Henrik Svennerstam,et al.  Capacities and constraints of amino acid utilization in Arabidopsis. , 2008, The New phytologist.

[13]  Rodrigo A Gutiérrez,et al.  Systems approach identifies an organic nitrogen-responsive gene network that is regulated by the master clock control gene CCA1 , 2008, Proceedings of the National Academy of Sciences.

[14]  A. Paszkowski,et al.  Properties of serine:glyoxylate aminotransferase purified from Arabidopsis thaliana leaves. , 2008, Acta biochimica et biophysica Sinica.

[15]  G. Coruzzi,et al.  Cell-specific nitrogen responses mediate developmental plasticity , 2008, Proceedings of the National Academy of Sciences.

[16]  Rongchen Wang,et al.  Nitrite Acts as a Transcriptome Signal at Micromolar Concentrations in Arabidopsis Roots1[W][OA] , 2007, Plant Physiology.

[17]  Nicholas J. Provart,et al.  An “Electronic Fluorescent Pictograph” Browser for Exploring and Analyzing Large-Scale Biological Data Sets , 2007, PloS one.

[18]  A. Weber,et al.  AAP1 transports uncharged amino acids into roots of Arabidopsis. , 2007, The Plant journal : for cell and molecular biology.

[19]  C. Bellini,et al.  Comprehensive Screening of Arabidopsis Mutants Suggests the Lysine Histidine Transporter 1 to Be Involved in Plant Uptake of Amino Acids1[W] , 2007, Plant Physiology.

[20]  P. Shewry,et al.  Asparagine in plants , 2007 .

[21]  M. Miyao,et al.  Glutamate:Glyoxylate Aminotransferase Modulates Amino Acid Content during Photorespiration1 , 2006, Plant Physiology.

[22]  W. Frommer,et al.  Arabidopsis LHT1 Is a High-Affinity Transporter for Cellular Amino Acid Uptake in Both Root Epidermis and Leaf Mesophyll[W] , 2006, The Plant Cell Online.

[23]  R. Chapman,et al.  Co-occurrence of both l-asparaginase subtypes in Arabidopsis: At3g16150 encodes a K+-dependent l-asparaginase , 2006, Planta.

[24]  C. Masclaux-Daubresse,et al.  Glutamine Synthetase-Glutamate Synthase Pathway and Glutamate Dehydrogenase Play Distinct Roles in the Sink-Source Nitrogen Cycle in Tobacco1 , 2006, Plant Physiology.

[25]  M. Jaskólski,et al.  Structural aspects of L-asparaginases, their friends and relations. , 2006, Acta biochimica Polonica.

[26]  M. Stitt,et al.  Genome-Wide Identification and Testing of Superior Reference Genes for Transcript Normalization in Arabidopsis1[w] , 2005, Plant Physiology.

[27]  Stefan R. Henz,et al.  A gene expression map of Arabidopsis thaliana development , 2005, Nature Genetics.

[28]  Yuji Kamiya,et al.  Genome-wide profiling of stored mRNA in Arabidopsis thaliana seed germination: epigenetic and genetic regulation of transcription in seed. , 2005, The Plant journal : for cell and molecular biology.

[29]  K. Joy,et al.  Metabolism of some amino acids in relation to the photorespiratory nitrogen cycle of pea leaves , 1986, Planta.

[30]  Gloria Coruzzi,et al.  Genomic Analysis of the Nitrate Response Using a Nitrate Reductase-Null Mutant of Arabidopsis1[w] , 2004, Plant Physiology.

[31]  Rongchen Wang,et al.  Nitrate Reductase Activity Is Required for Nitrate Uptake into Fungal but Not Plant Cells* , 2004, Journal of Biological Chemistry.

[32]  P. Lea,et al.  Photorespiratory N donors, aminotransferase specificity and photosynthesis in a mutant of barley deficient in serine: glyoxylate aminotransferase activity , 1987, Planta.

[33]  K. Joy,et al.  Two routes for asparagine metabolism in Pisum sativum L. , 1981, Planta.

[34]  Rongchen Wang,et al.  Microarray Analysis of the Nitrate Response in Arabidopsis Roots and Shoots Reveals over 1,000 Rapidly Responding Genes and New Linkages to Glucose, Trehalose-6-Phosphate, Iron, and Sulfate Metabolism1[w] , 2003, Plant Physiology.

[35]  A. Liepman,et al.  Peroxisomal alanine : glyoxylate aminotransferase (AGT1) is a photorespiratory enzyme with multiple substrates in Arabidopsis thaliana. , 2001, The Plant journal : for cell and molecular biology.

[36]  Didier Raoult,et al.  Molecular identification by , 2000 .

[37]  G. Coruzzi,et al.  Metabolic Regulation of the Gene Encoding Glutamine-Dependent Asparagine Synthetase in Arabidopsis thaliana , 1994, Plant physiology.

[38]  E. Havir,et al.  A Mutant of Nicotiana sylvestris Lacking Serine:Glyoxylate Aminotransferase: Substrate Specificity of the Enzyme and Fate of [2-C]Glycolate in Plants with Genetically Altered Enzyme Levels. , 1988, Plant physiology.

[39]  K. Joy,et al.  Role of asparagine in the photorespiratory nitrogen metabolism of pea leaves. , 1985, Plant physiology.

[40]  K. Joy,et al.  Transamination, deamidation, and the utilisation of asparagine amino nitrogen in pea leaves , 1985 .

[41]  K. Joy,et al.  Subcellular Localization of Asparaginase and Asparagine Aminotransferase in Pisum sativum Leaves. , 1983, Plant physiology.

[42]  K. Joy,et al.  Purification and properties of an asparagine aminotransferase from Pisum sativum leaves. , 1983, Archives of biochemistry and biophysics.

[43]  T. Betsche Aminotransfer from Alanine and Glutamate to Glycine and Serine during Photorespiration in Oat Leaves. , 1983, Plant physiology.

[44]  C. Somerville,et al.  Photorespiration mutants of Arabidopsis thaliana deficient in serine-glyoxylate aminotransferase activity. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[45]  K. Joy,et al.  2-Hydroxysuccinamic acid: a product of asparagine metabolis in plants. , 1978, Biochemical and biophysical research communications.

[46]  J. Streeter Asparaginase and asparagine transaminase in soybean leaves and root nodules. , 1977, Plant physiology.