Investigation of Slider Vibrations Due to Contact With a Smooth Disk Surface

The dynamic behavior of pico sliders is investigated during slider-disk contacts as a function of velocity, pitch angle, crown height, and lubricant thickness using laser Doppler vibrometry and acoustic emission sensors. Analog and digital filtering methods are applied to distinguish air bearing and slider body resonances from frequencies related to disk runout, load beam design, and gimbal structure. Sliders with high pitch angle and small crown were found to exhibit smaller vibration amplitudes after slider-disk contacts than sliders with low pitch angle or large crown. The lubricant thickness of the disk was found to affect both the glide avalanche height of the disk and the dynamic behavior of the slider. The results show that roll and pitch frequencies of the air bearing increase with decreasing disk velocity.