Measuring Semantic Similarity Between Geospatial Conceptual Regions

Determining the grade of semantic similarity between geospatial concepts is the basis for evaluating semantic interoperability of geographic information services and their users. Geometrical models, such as conceptual spaces, offer one way of representing geospatial concepts, which are modelled as n-dimensional regions. Previous approaches have suggested to measure semantic similarity between concepts based on their approximation by single points. This paper presents a way to measure semantic similarity between conceptual regions—leading to more accurate results. In addition, it allows for asymmetries by measuring directed similarities. Examples from the geospatial domain illustrate the similarity measure and demonstrate its plausibility.

[1]  A. Tversky,et al.  Similarity, separability, and the triangle inequality. , 1982, Psychological review.

[2]  Michael F. Goodchild,et al.  Foundations of Geographic Information Science , 2003 .

[3]  E. Rosch,et al.  Cognition and Categorization , 1980 .

[4]  C. Krumhansl Concerning the Applicability of Geometric Models to Similarity Data : The Interrelationship Between Similarity and Spatial Density , 2005 .

[5]  Eleanor Rosch,et al.  Principles of Categorization , 1978 .

[6]  Peter Gärdenfors,et al.  Representing actions and functional properties in conceptual spaces , 2007 .

[7]  Max J. Egenhofer,et al.  Determining Semantic Similarity among Entity Classes from Different Ontologies , 2003, IEEE Trans. Knowl. Data Eng..

[8]  N. Chater,et al.  Similarity as transformation , 2003, Cognition.

[9]  Achille C. Varzi,et al.  Formal Ontology in Information Systems : proceedings of the Third International Conference (FOIS-2004) , 2004 .

[10]  Robert L. Goldstone,et al.  Concepts and Categorization , 2003 .

[11]  Max J. Egenhofer,et al.  Comparing geospatial entity classes: an asymmetric and context-dependent similarity measure , 2004, Int. J. Geogr. Inf. Sci..

[12]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[13]  Mikael Johannesson,et al.  THE PROBLEM OF COMBINING INTEGRAL AND SEPARABLE DIMENSIONS , 2001 .

[14]  Paul D. Minton,et al.  Statistics: The Exploration and Analysis of Data , 2002, Technometrics.

[15]  Jaap Van Brakel,et al.  Foundations of measurement , 1983 .

[16]  M. Egenhofer,et al.  Point-Set Topological Spatial Relations , 2001 .

[17]  M. Johannesson Modelling asymmetric similarity with prominence. , 2000, The British journal of mathematical and statistical psychology.

[18]  Max J. Egenhofer,et al.  Assessing semantic similarity among spatial entity classes , 2000 .

[19]  A. Tversky,et al.  Additive similarity trees , 1977 .

[20]  N. Foo Conceptual Spaces—The Geometry of Thought , 2022 .

[21]  F. Frances Yao,et al.  Computational Geometry , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[22]  L. Marks,et al.  Optional processes in similarity judgments , 1992, Perception & psychophysics.

[23]  Mark Gahegan,et al.  Constructing Semantically Scalable Cognitive Spaces , 2003, COSIT.

[24]  Max J. Egenhofer,et al.  Asessing Semnatic Similarities among Geospatial Feature Class Definitions , 1999, INTEROP.

[25]  L. Barsalou Situated simulation in the human conceptual system , 2003 .

[26]  Roy Rada,et al.  Development and application of a metric on semantic nets , 1989, IEEE Trans. Syst. Man Cybern..

[27]  Patrick Suppes,et al.  Foundations of Measurement, Vol. II: Geometrical, Threshold, and Probabilistic Representations , 1989 .

[28]  Amos Tversky,et al.  Studies of similarity , 1978 .

[29]  Max J. Egenhofer,et al.  A Formal Definition of Binary Topological Relationships , 1989, FODO.

[30]  Patrick Suppes,et al.  Geometrical, Threshold, and Probabilistic Representations , 1989 .

[31]  George W. Furnas,et al.  Pictures of relevance: A geometric analysis of similarity measures , 1987, J. Am. Soc. Inf. Sci..

[32]  A. Tversky Features of Similarity , 1977 .

[33]  Mikael Johannesson,et al.  Combining Integral and Seperable Subspaces , 2001 .

[34]  Kenneth H. Rosen,et al.  Discrete Mathematics and its applications , 2000 .

[35]  F ATTNEAVE,et al.  Dimensions of similarity. , 1950, The American journal of psychology.

[36]  Gert Vegter,et al.  In handbook of discrete and computational geometry , 1997 .

[37]  Mikael Johannesson,et al.  Geometric Models of Similarity , 2002 .