Measuring Semantic Similarity Between Geospatial Conceptual Regions
暂无分享,去创建一个
[1] A. Tversky,et al. Similarity, separability, and the triangle inequality. , 1982, Psychological review.
[2] Michael F. Goodchild,et al. Foundations of Geographic Information Science , 2003 .
[3] E. Rosch,et al. Cognition and Categorization , 1980 .
[4] C. Krumhansl. Concerning the Applicability of Geometric Models to Similarity Data : The Interrelationship Between Similarity and Spatial Density , 2005 .
[5] Eleanor Rosch,et al. Principles of Categorization , 1978 .
[6] Peter Gärdenfors,et al. Representing actions and functional properties in conceptual spaces , 2007 .
[7] Max J. Egenhofer,et al. Determining Semantic Similarity among Entity Classes from Different Ontologies , 2003, IEEE Trans. Knowl. Data Eng..
[8] N. Chater,et al. Similarity as transformation , 2003, Cognition.
[9] Achille C. Varzi,et al. Formal Ontology in Information Systems : proceedings of the Third International Conference (FOIS-2004) , 2004 .
[10] Robert L. Goldstone,et al. Concepts and Categorization , 2003 .
[11] Max J. Egenhofer,et al. Comparing geospatial entity classes: an asymmetric and context-dependent similarity measure , 2004, Int. J. Geogr. Inf. Sci..
[12] Mark de Berg,et al. Computational geometry: algorithms and applications , 1997 .
[13] Mikael Johannesson,et al. THE PROBLEM OF COMBINING INTEGRAL AND SEPARABLE DIMENSIONS , 2001 .
[14] Paul D. Minton,et al. Statistics: The Exploration and Analysis of Data , 2002, Technometrics.
[15] Jaap Van Brakel,et al. Foundations of measurement , 1983 .
[16] M. Egenhofer,et al. Point-Set Topological Spatial Relations , 2001 .
[17] M. Johannesson. Modelling asymmetric similarity with prominence. , 2000, The British journal of mathematical and statistical psychology.
[18] Max J. Egenhofer,et al. Assessing semantic similarity among spatial entity classes , 2000 .
[19] A. Tversky,et al. Additive similarity trees , 1977 .
[20] N. Foo. Conceptual Spaces—The Geometry of Thought , 2022 .
[21] F. Frances Yao,et al. Computational Geometry , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.
[22] L. Marks,et al. Optional processes in similarity judgments , 1992, Perception & psychophysics.
[23] Mark Gahegan,et al. Constructing Semantically Scalable Cognitive Spaces , 2003, COSIT.
[24] Max J. Egenhofer,et al. Asessing Semnatic Similarities among Geospatial Feature Class Definitions , 1999, INTEROP.
[25] L. Barsalou. Situated simulation in the human conceptual system , 2003 .
[26] Roy Rada,et al. Development and application of a metric on semantic nets , 1989, IEEE Trans. Syst. Man Cybern..
[27] Patrick Suppes,et al. Foundations of Measurement, Vol. II: Geometrical, Threshold, and Probabilistic Representations , 1989 .
[28] Amos Tversky,et al. Studies of similarity , 1978 .
[29] Max J. Egenhofer,et al. A Formal Definition of Binary Topological Relationships , 1989, FODO.
[30] Patrick Suppes,et al. Geometrical, Threshold, and Probabilistic Representations , 1989 .
[31] George W. Furnas,et al. Pictures of relevance: A geometric analysis of similarity measures , 1987, J. Am. Soc. Inf. Sci..
[32] A. Tversky. Features of Similarity , 1977 .
[33] Mikael Johannesson,et al. Combining Integral and Seperable Subspaces , 2001 .
[34] Kenneth H. Rosen,et al. Discrete Mathematics and its applications , 2000 .
[35] F ATTNEAVE,et al. Dimensions of similarity. , 1950, The American journal of psychology.
[36] Gert Vegter,et al. In handbook of discrete and computational geometry , 1997 .
[37] Mikael Johannesson,et al. Geometric Models of Similarity , 2002 .