Global solutions to vortex density equations arising from sup-conductivity

Abstract In the first part of this paper, we establish the existence of a global renormalized solution to a family of vortex density equations arising from superconductivity. And we show by an explicit example the necessity of the notion of renormalized solution to be used here. In the second part, we prove the global existence and uniqueness of W 1 , p and C α solutions to a modified model, which is derived from the physically sign-changing vortices case.

[1]  Halil Mete Soner,et al.  Dynamics of Ginzburg‐Landau Vortices , 1998 .

[2]  A. Majda,et al.  Oscillations and concentrations in weak solutions of the incompressible fluid equations , 1987 .

[3]  Qiang Du,et al.  Existence of Weak Solutions to Some Vortex Density Models , 2003, SIAM J. Math. Anal..

[4]  M. Schonbek,et al.  Convergence of solutions to nonlinear dispersive equations , 1982 .

[5]  E Weinan,et al.  Dynamics of vortices in Ginzburg-Landau theories with applications to superconductivity , 1994 .

[6]  Luc Tartar,et al.  Compensated compactness and applications to partial differential equations , 1979 .

[7]  Lawrence C. Evans,et al.  Weak convergence methods for nonlinear partial differential equations , 1990 .

[8]  Ping Zhang,et al.  On the hydrodynamic limit of Ginzburg-Landau vortices , 1999 .

[9]  Ping Zhang,et al.  RAREFACTIVE SOLUTIONS TO A NONLINEAR VARIATIONAL WAVE EQUATION OF LIQUID CRYSTALS , 2001 .

[10]  P. Lions,et al.  Ordinary differential equations, transport theory and Sobolev spaces , 1989 .

[11]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[12]  P. Lions,et al.  GLOBAL SOLUTIONS FOR SOME OLDROYD MODELS OF NON-NEWTONIAN FLOWS , 2000 .

[13]  R. Schwarzenberger ORDINARY DIFFERENTIAL EQUATIONS , 1982 .

[14]  L. Young Lectures on the Calculus of Variations and Optimal Control Theory , 1980 .

[15]  J. Delort Existence de nappes de tourbillon en dimension deux , 1991 .

[16]  Ping Zhang,et al.  Weak solutions to a nonlinear variational wave equation with general data , 2005 .

[17]  L. Young,et al.  Lectures on the Calculus of Variations and Optimal Control Theory. , 1971 .

[18]  V. I. Yudovich,et al.  Non-stationary flow of an ideal incompressible liquid , 1963 .

[19]  P. Lions,et al.  On the Cauchy problem for Boltzmann equations: global existence and weak stability , 1989 .

[20]  Sijue Wu,et al.  OnL1-vorticity for 2-D incompressible flow , 1993 .

[21]  P. Lions Mathematical topics in fluid mechanics , 1996 .

[22]  C. M. Elliott,et al.  Viscosity Solutions of a Degenerate Parabolic-Elliptic System Arising in the Mean-Field Theory of Superconductivity , 1998 .

[23]  Fanghua Lin,et al.  Some Dynamical Properties of Ginzburg-Landau Vortices , 1996 .

[24]  J. Chemin,et al.  Persistance de structures géométriques dans les fluides incompressibles bidimensionnels , 1993 .

[25]  Jacob Rubinstein,et al.  A mean-field model of superconducting vortices , 1996, European Journal of Applied Mathematics.

[26]  Ping Zhang,et al.  Existence and Uniqueness of Solutions¶of an Asymptotic Equation¶Arising from a Variational Wave Equation¶with General Data , 2000 .

[27]  Guy Métivier,et al.  Focusing at a point and absorption of nonlinear oscillations , 1995 .