A remote sensing-based dataset to characterize the ecosystem functioning and functional diversity in the Biosphere Reserve of Sierra Nevada (SE Spain)

Abstract. Conservation Biology faces the challenge of safeguarding the ecosystem functions and ecological processes (water cycle, nutrients, energy flow, and community dynamics) that sustain the multiple facets of biodiversity. Characterization and evaluation of these processes and functions can be carried out through functional attributes or traits related to the exchanges of matter and energy between vegetation and the atmosphere. Based on this principle, satellite imagery can provide integrative spatiotemporal characterizations of ecosystem functions at local to global scales. Here, we provide a multi-temporal dataset at protected area level, that characterizes the spatial patterns and temporal dynamics of ecosystem functioning in the Biosphere Reserve of Sierra Nevada (Spain), captured through the spectral vegetation index EVI (Enhanced Vegetation Index, product MOD13Q1.006 from MODIS sensor) from 2001 to 2018. The database contains, at the annual scale, a synthetic map of Ecosystem Functional Types (EFTs) classes from three Ecosystem Functional Attributes (EFAs): i) descriptors of annual primary production, ii) seasonality, and iii) phenology of carbon gains. It also includes two ecosystem functional diversity indices derived from the above datasets: i) EFT richness, and ii) EFT rarity. Finally, it provides inter-annual summaries for all previous variables, i.e., their long-term means and inter-annual variabilities. The datasets are available in two open-source sites (PANGAEA: https://doi.pangaea.de/10.1594/PANGAEA.924792 (Cazorla et al., 2020a) and http://obsnev.es/apps/efts_SN.html). This dataset brings to scientists, managers, and the general public, valuable information on the first characterization of ecosystem functional diversity based on primary production developed in Sierra Nevada, a biodiversity hotspot in the Mediterranean basin, and an exceptional natural laboratory for ecological research within the Long-Term Social-Ecological Research (LTSER) network.

[1]  C. A. Mücher,et al.  Priority list of biodiversity metrics to observe from space , 2021, Nature Ecology & Evolution.

[2]  Ricardo A. Moreno-Llorca,et al.  Social media photo content for Sierra Nevada: a dataset to support the assessment of cultural ecosystem services in protected areas , 2020, Nature Conservation.

[3]  J. Hicke,et al.  Remote sensing of the terrestrial carbon cycle: A review of advances over 50 years , 2019, Remote Sensing of Environment.

[4]  A. J. Pérez-Luque,et al.  Dataset of occurrence and incidence of pine processionary moth in Andalusia, south Spain , 2019, ZooKeys.

[5]  D. Hayes,et al.  Ecosystem functional diversity and the representativeness of environmental networks across the conterminous United States , 2018, Agricultural and Forest Meteorology.

[6]  Christopher B Anderson,et al.  Biodiversity monitoring, earth observations and the ecology of scale. , 2018, Ecology letters.

[7]  N. Pettorelli,et al.  Satellite remote sensing of ecosystem functions: opportunities, challenges and way forward , 2018 .

[8]  Michael Dixon,et al.  Google Earth Engine: Planetary-scale geospatial analysis for everyone , 2017 .

[9]  Paulo Alves,et al.  Potential of satellite-derived ecosystem functional attributes to anticipate species range shifts , 2017, Int. J. Appl. Earth Obs. Geoinformation.

[10]  A. J. Pérez-Luque,et al.  Global Change Impact in the Sierra Nevada Long‐Term Ecological Research Site (Southern Spain) , 2017 .

[11]  D. Alcaraz‐Segura,et al.  Remote-sensing based approach to forecast habitat quality under climate change scenarios , 2017, PloS one.

[12]  N. Pettorelli,et al.  Framing the concept of satellite remote sensing essential biodiversity variables: challenges and future directions , 2016 .

[13]  J. Lorite An updated checklist of the vascular flora of Sierra Nevada (SE Spain) , 2016 .

[14]  A. J. Pérez-Luque,et al.  Dataset of Passerine bird communities in a Mediterranean high mountain (Sierra Nevada, Spain) , 2016, ZooKeys.

[15]  C. A. Mücher,et al.  Environmental science: Agree on biodiversity metrics to track from space , 2015, Nature.

[16]  Ramón Pérez-Pérez,et al.  An ontological system based on MODIS images to assess ecosystem functioning of Natura 2000 habitats: A case study for Quercus pyrenaica forests , 2015, Int. J. Appl. Earth Obs. Geoinformation.

[17]  A. J. Pérez-Luque,et al.  Dataset of Phenology of Mediterranean high-mountain meadows flora (Sierra Nevada, Spain) , 2015, PhytoKeys.

[18]  A. J. Pérez-Luque,et al.  Dataset of MIGRAME Project (Global Change, Altitudinal Range Shift and Colonization of Degraded Habitats in Mediterranean Mountains) , 2015, PhytoKeys.

[19]  María Amparo Gilabert,et al.  Identification of Ecosystem Functional Types from Coarse Resolution Imagery Using a Self-Organizing Map Approach: A Case Study for Spain , 2014, Remote. Sens..

[20]  F. Chapin,et al.  Approaches to defining a planetary boundary for biodiversity , 2014 .

[21]  J. Lorite,et al.  Hotspots within hotspots: Endemic plant richness, environmental drivers, and implications for conservation , 2014 .

[22]  D. Alcaraz‐Segura,et al.  Ecosystem Services Assessment of National Parks Networks for Functional Diversity and Carbon Conservation Strategies Using Remote Sensing , 2013 .

[23]  Stefan Sommer,et al.  Ecosystem functional units characterized by satellite observed phenology and productivity gradients: A case study for Europe , 2013 .

[24]  Domingo Alcaraz-Segura,et al.  Environmental and Human Controls of Ecosystem Functional Diversity in Temperate South America , 2013, Remote. Sens..

[25]  Miguel Delibes,et al.  The ecosystem functioning dimension in conservation: insights from remote sensing , 2012, Biodiversity and Conservation.

[26]  J. M. Mesa,et al.  Vascular plant diversity and climate change in the upper zone of Sierra Nevada, Spain , 2012 .

[27]  Domingo Alcaraz-Segura,et al.  The role of vegetation and lithology in the spatial and inter-annual response of EVI to climate in drylands of Southeastern Spain , 2012 .

[28]  Emilio Chuvieco,et al.  Debating the greening vs. browning of the North American boreal forest: differences between satellite datasets , 2010 .

[29]  Miguel Delibes,et al.  Ecosystem functioning of protected and altered Mediterranean environments: A remote sensing classification in Doñana, Spain , 2010 .

[30]  Roland Geerken,et al.  An algorithm to classify and monitor seasonal variations in vegetation phenologies and their inter-annual change , 2009 .

[31]  Nicholas C. Coops,et al.  Development of a large area biodiversity monitoring system driven by remote sensing , 2007 .

[32]  P. Balvanera,et al.  Quantifying the evidence for biodiversity effects on ecosystem functioning and services. , 2006, Ecology letters.

[33]  Owen L. Petchey,et al.  Functional diversity: back to basics and looking forward. , 2006, Ecology letters.

[34]  José M. Paruelo,et al.  Identification of current ecosystem functional types in the Iberian Peninsula , 2006 .

[35]  N. Pettorelli,et al.  Using the satellite-derived NDVI to assess ecological responses to environmental change. , 2005, Trends in ecology & evolution.

[36]  M. Jimenez-Sanchez,et al.  Gypsicolous flora, conservation and restoration of quarries in the southeast of the Iberian Peninsula , 2004, Biodiversity & Conservation.

[37]  Kevin J. Gaston,et al.  Measuring beta diversity for presence–absence data , 2003 .

[38]  C. Stoner,et al.  Assessing habitat protection regimes in Tanzania using AVHRR NDVI composites: Comparisons at different spatial and temporal scales , 2003 .

[39]  A. Huete,et al.  Overview of the radiometric and biophysical performance of the MODIS vegetation indices , 2002 .

[40]  O. Sala,et al.  Current Distribution of Ecosystem Functional Types in Temperate South America , 2001, Ecosystems.

[41]  A. Huete,et al.  A comparison of vegetation indices over a global set of TM images for EOS-MODIS , 1997 .

[42]  José M. Paruelo,et al.  REGIONAL PATTERNS OF NORMALIZED DIFFERENCE VEGETATION INDEX IN NORTH AMERICAN SHRUBLANDS AND GRASSLANDS , 1995 .

[43]  Brent N. Holben,et al.  Accuracy of the AVHRR vegetation index as a predictor of biomass, primary productivity and net CO2 flux , 1989, Vegetatio.

[44]  John Townshend,et al.  Multitemporal Dimensionality of Images of Normalized Difference Vegetation Index at Continental Scales , 1985, IEEE Transactions on Geoscience and Remote Sensing.

[45]  M. T. García,et al.  Valores y argumentos para la conservación de la diversidad vegetal de Sierra Nevada , 2019 .

[46]  M. J. Morales,et al.  Los suelos de Sierra Nevada, su relación con la litología y la vegetación , 2019 .

[47]  M. C. Romero,et al.  Rareza y endemicidad en la flora vascular de Sierra Nevada , 2019 .

[48]  J. M. Barea-Azcón,et al.  Global change impacts in Sierra Nevada: challenges for conservation , 2016 .

[49]  Fang Huang,et al.  Identification and analysis of ecosystem functional types in the west of Songnen Plain, China, based on moderate resolution imaging spectroradiometer data , 2015 .

[50]  Miguel Delibes,et al.  Use of Descriptors of Ecosystem Functioning for Monitoring a National Park Network: A Remote Sensing Approach , 2009, Environmental management.

[51]  S. Running,et al.  Global Terrestrial Gross and Net Primary Productivity from the Earth Observing System , 2000 .

[52]  J. Black,et al.  Ecosystem Functioning , 1968, Nature.

[53]  P. Jaccard,et al.  Etude comparative de la distribution florale dans une portion des Alpes et des Jura , 1901 .