The Compact, Conical, Accretion-Disk Warm Absorber of the Seyfert 1 Galaxy NGC 4051 and Its Implications for IGM-Galaxy Feedback Processes

Using a 100 ks XMM-Newton exposure of NGC 4051, we show that the time evolution of the ionization state of the X-ray absorbers in response to the rapid and highly variable X-ray continuum constrains all the main physical and geometrical properties of an AGN "warm absorber" wind. The absorber consists of two different ionization components, with a difference of ≈100 in ionization parameter and ≈5 in column density. By tracking the response in the opacity of the gas to changes in the ionizing continuum, we were able to constrain the electron density of the system. We find ne = (5.8-21.0) × 106 cm-3 for the high-ionization absorber and ne > 8.1 × 107 cm-3 for the low-ionization absorber. These densities require that the high- and low-ionization absorbing components of NGC 4051 must be compact, at distances 0.5-1.0 lt-days (2200RS-4400RS) and <3.5 lt-days (<15,800RS) from the continuum source, respectively. This rules out an origin in the dusty obscuring torus, as the dust sublimation radius is at least an order of magnitude larger (~12 lt-days). An accretion-disk origin for the warm absorber wind is strongly suggested, and an association with the high-ionization, He II emitting, broad emission line region (radius <2 lt-days) is possible. The two detected phases are consistent with pressure equilibrium, which suggests that the absorber consists of a two-phase medium. A radial flow in a spherical geometry is unlikely, and a conical wind geometry is preferred. The implied mass outflow rate from this wind can be well constrained and is 2%-5% of the mass accretion rate. If the mass outflow rate scaling with accretion rate is representative of all quasars, our results imply that warm absorbers in powerful quasars are unlikely to produce important evolutionary effects on their larger environment, unless we are observing the winds before they get fully accelerated. Only in such a scenario can AGN winds be important for cosmic feedback.

[1]  J. Hughes,et al.  Suzaku Observations of the Local and Distant Hot ISM , 2006, astro-ph/0609832.

[2]  Technion,et al.  X-ray/ultraviolet observing campaign of the Markarian 279 active galactic nucleus outflow : a close look at the absorbing/emitting gas with Chandra-LETGS , 2006, astro-ph/0609385.

[3]  D. Crenshaw,et al.  Kinematics of the Narrow-Line Region in the Seyfert 2 Galaxy NGC 1068: Dynamical Effects of the Radio Jet , 2006, astro-ph/0603803.

[4]  S. Mathur,et al.  XMM-Newton View of the z > 0 Warm-Hot Intergalactic Medium toward Markarian 421 , 2006, astro-ph/0601620.

[5]  S. Bianchi,et al.  The soft X-ray/NLR connection: a single photoionized medium? , 2005, astro-ph/0511216.

[6]  P. Hopkins,et al.  A Unified, Merger-driven Model of the Origin of Starbursts, Quasars, the Cosmic X-Ray Background, Supermassive Black Holes, and Galaxy Spheroids , 2005, astro-ph/0506398.

[7]  J. Everett,et al.  Radiative Transfer and Acceleration in Magnetocentrifugal Winds , 2005, astro-ph/0506321.

[8]  S. Veilleux,et al.  Galactic Winds , 2005, astro-ph/0504435.

[9]  S. Mathur,et al.  Supersolar Metallicity in the NLS1 Galaxy Markarian 1044 , 2005, astro-ph/0504159.

[10]  R. V. Meer,et al.  Simultaneous X-ray and UV spectroscopy of the Seyfert galaxy NGC 5548 - II. Physical conditions in the X-ray absorber , 2005, astro-ph/0501122.

[11]  O. University,et al.  Opacity Variations in the Ionized Absorption in NGC 3783: A Compact Absorber , 2004, astro-ph/0411554.

[12]  M. Page,et al.  The nature and origin of Seyfert warm absorbers , 2004, astro-ph/0411297.

[13]  N. Schartel,et al.  The XMM-Newton view of PG quasars - I. X-ray continuum and absorption , 2004, astro-ph/0411051.

[14]  Jelle S. Kaastra,et al.  Performance of the reflection-grating spectrometer CCD detectors onboard XMM-Newton , 2004, SPIE Astronomical Telescopes + Instrumentation.

[15]  S. Mathur,et al.  The Ionized Nuclear Environment in NGC 985 as seen by Chandra and BeppoSAX , 2004, astro-ph/0409490.

[16]  P. Nulsen,et al.  The Cluster-Scale AGN Outburst in Hydra A , 2004, astro-ph/0408315.

[17]  B. M. Peterson,et al.  Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. II. A Homogeneous Analysis of a Large Reverberation-Mapping Database , 2004, astro-ph/0407299.

[18]  G. Kriss,et al.  X-ray/UV campaign on the Mrk 279 outflow: Density diagnostics in Active Galactic Nuclei using O v K-shell absorption lines , 2004, Astronomy &amp; Astrophysics.

[19]  U. Southampton,et al.  Relativistic O VIII Emission and Ionized Outflow in NGC 4051 Measured with XMM-Newton , 2004, astro-ph/0401173.

[20]  E. Scannapieco,et al.  Quasar Feedback: The Missing Link in Structure Formation , 2004, astro-ph/0401087.

[21]  D. Crenshaw,et al.  Mass Loss from the Nuclei of Active Galaxies , 2003 .

[22]  K. Nandra,et al.  The XMM-Newton Iron Line Profile of NGC 3783 , 2003, astro-ph/0310820.

[23]  R. Taylor,et al.  Complex X-ray spectral behaviour of NGC 4051 in the low flux state , 2003, astro-ph/0310701.

[24]  Astronomy,et al.  Exploring the complex X-ray spectrum of NGC 4051 , 2003, astro-ph/0310257.

[25]  M. Vestergaard,et al.  Occurrence and Global Properties of Narrow C IV λ1549 Å Absorption Lines in Moderate-Redshift Quasars , 2003, astro-ph/0309550.

[26]  I. Papadakis,et al.  Combined long and short timescale X-ray variability of NGC 4051 with RXTE and XMM-Newton , 2003, astro-ph/0311220.

[27]  J. C. Shields,et al.  The Ionized Gas and Nuclear Environment in NGC 3783. IV. Variability and Modeling of the 900 Kilosecond Chandra Spectrum , 2003, astro-ph/0309096.

[28]  M. Sako,et al.  A Long Look at NGC 3783 with the XMM-Newton Reflection Grating Spectrometer , 2003, astro-ph/0307467.

[29]  D. O. Astronomy,et al.  Toward a Self-Consistent Model of the Ionized Absorber in NGC 3783 , 2003, astro-ph/0306460.

[30]  W. Brandt,et al.  The Ionized Gas and Nuclear Environment in NGC 3783. III. Detection of a Decreasing Radial Velocity in an Intrinsic Ultraviolet Absorber , 2003, astro-ph/0306201.

[31]  M. Pettini Element Abundances through the Cosmic Ages , 2003, astro-ph/0303272.

[32]  Jeremy Goodman,et al.  Self-gravity and quasi-stellar object discs , 2003 .

[33]  J. Kaastra,et al.  XMM-NEWTON High resolution spectroscopy of NGC 5548 , 2003, astro-ph/0302493.

[34]  J. Shields,et al.  Ultraviolet and Optical Properties of Narrow‐Line Seyfert 1 Galaxies , 2003, astro-ph/0302369.

[35]  Shai Kaspi,et al.  The Ionized Gas and Nuclear Environment in NGC 3783. II. Averaged Hubble Space Telescope/STIS and Far Ultraviolet Spectroscopic Explorer Spectra , 2003, astro-ph/0506323.

[36]  J. Lee,et al.  Testing the Seyfert unification theory: Chandra HETGS observations of NGC 1068 , 2002, astro-ph/0211406.

[37]  M. Sako,et al.  The soft X-ray spectrum from NGC 1068 observed with LETGS on Chandra , 2002, astro-ph/0211403.

[38]  A. C. Brinkman,et al.  XMM-Newton Reflection Grating Spectrometer Observations of Discrete Soft X-Ray Emission Features from NGC 1068 , 2002, astro-ph/0203290.

[39]  M. Karovska,et al.  Smoking Quasars: A New Source for Cosmic Dust , 2002, astro-ph/0202002.

[40]  Jeremy Goodman,et al.  Selfgravity and QSO disks , 2002, astro-ph/0201001.

[41]  K. Nandra,et al.  The Density and Location of the X-Ray-absorbing Gas in NGC 3516 , 2001, astro-ph/0112027.

[42]  Gerard A. Kriss,et al.  Warm Absorbers in Active Galactic Nuclei: A Multitemperature Wind , 2001 .

[43]  Aneta Siemiginowska,et al.  Sherpa: a mission-independent data analysis application , 2001, SPIE Optics + Photonics.

[44]  D. Liedahl,et al.  Collisional Plasma Models with APEC/APED: Emission-Line Diagnostics of Hydrogen-like and Helium-like Ions , 2001, astro-ph/0106478.

[45]  Alice Shapley,et al.  A Multivariate Statistical Analysis of Spiral Galaxy Luminosities. I. Data and Results , 2001, astro-ph/0106361.

[46]  W. Brandt,et al.  High-Resolution X-Ray and Ultraviolet Spectroscopy of the Complex Intrinsic Absorption in NGC 4051 with Chandra and the Hubble Space Telescope , 2001, astro-ph/0104125.

[47]  M. Sako,et al.  The Chandra High-Energy Transmission Grating Observation of an X-Ray Ionization Cone in Markarian 3 , 2000, astro-ph/0009323.

[48]  Ralf Bender,et al.  A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion , 2000, astro-ph/0006289.

[49]  D. Merritt,et al.  A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies , 2000, astro-ph/0006053.

[50]  P. Berlind,et al.  X-Ray and Optical Variability in NGC 4051 and the Nature of Narrow-Line Seyfert 1 Galaxies , 2000, astro-ph/0005433.

[51]  Boulder,et al.  Dynamics of Line-driven Disk Winds in Active Galactic Nuclei. II. Effects of Disk Radiation , 2000, astro-ph/0005315.

[52]  M. Elvis A Structure for Quasars , 2000, astro-ph/0008064.

[53]  Kraemer,et al.  Resolved Spectroscopy of the Narrow-Line Region in NGC 1068: Kinematics of the Ionized Gas , 2000, The Astrophysical journal.

[54]  Delphine Porquet,et al.  X-ray photoionized plasma diagnostics with Helium-like ions. Application to Warm Absorber-Emitter in Active Galactic Nuclei , 2000 .

[55]  G. Ferland,et al.  Elemental Abundances in Quasistellar Objects: Star Formation and Galactic Nuclear Evolution at High Redshifts , 1999, astro-ph/9904223.

[56]  Cambridge,et al.  Resonant Absorption in the Active Galactic Nucleus Spectra Emerging from Photoionized Gas: Differences between Steep and Flat Ionizing Continua , 1998, astro-ph/9812392.

[57]  S. Tremaine,et al.  The Demography of Massive Dark Objects in Galaxy Centers , 1997, astro-ph/9708072.

[58]  K. Nandra,et al.  ASCA Observations of Seyfert 1 Galaxies. III. The Evidence for Absorption and Emission Due to Photoionized Gas , 1997, astro-ph/9708046.

[59]  J. Ostriker,et al.  Cooling Flows and Quasars: Different Aspects of the Same Phenomenon? I. Concepts , 1997, astro-ph/9706281.

[60]  C. Reynolds,et al.  An X-ray spectral study of 24 type 1 active galactic nuclei , 1997 .

[61]  H. Netzer X-Ray Lines in Active Galactic Nuclei and Photoionized Gases , 1996 .

[62]  S. Mathur,et al.  Testing Unified X-Ray/Ultraviolet Absorber Models with NGC 5548 , 1995 .

[63]  K. Nandra,et al.  ASCA PV observations of the Seyfert 1 galaxy MCG – 6 – 30 – 15: rapid variability of the warm absorber , 1995, astro-ph/9506086.

[64]  J. Krolik,et al.  Observable Properties of X-Ray--heated Winds in Active Galactic Nuclei: Warm Reflectors and Warm Absorbers: Erratum , 1995, astro-ph/9501089.

[65]  Belinda J. Wilkes,et al.  Accurate galactic N(H) values towards quasars and AGN , 1989 .

[66]  R. Barvainis,et al.  Hot Dust and the Near-Infrared Bump in the Continuum Spectra of Quasars and Active Galactic Nuclei , 1987 .

[67]  N. Langer Cosmochemistry The Melting Pot of the Elements: Stellar Nucleosynthesis , 2004 .

[68]  Elmar Pfeffermann,et al.  The European Photon Imaging Camera on XMM-Newton: The pn-CCD camera , 2001 .

[69]  J. Shull,et al.  The ionization equilibrium of astrophysically abundant elements , 1982 .