The subsidiary ordinary differential equations and the exact solutions of the higher order dispersive nonlinear Schrödinger equation

A set of subsidiary ordinary differential equations (sub-ODEs for short) are firstly introduced. And then the exact solutions (including the kink type solitary wave, the bell type solitary wave, the algebraic solitary wave and the sinusoidal traveling wave) of the higher order dispersive nonlinear Schrodinger equation with both fourth-order dispersion effects and a quintic nonlinearity describing the propagation of optical pulse in a medium are derived with the aid of the sub-ODEs, the Riccati equation and the homogeneous balance principle.

[1]  S. Tanev,et al.  Bright and dark solitary wave propagation and bistability in the anomalous dispersion region of optical waveguides with third- and fifth-order nonlinearities , 1996 .

[2]  Mingliang Wang Exact solutions for a compound KdV-Burgers equation , 1996 .

[3]  Mingliang Wang,et al.  Applications of F-expansion to periodic wave solutions for a new Hamiltonian amplitude equation , 2005 .

[4]  Z. Xia,et al.  Stochastic exact solutions to (2 + 1)-dimensional stochastic Borer–Kaup equation , 2005 .

[5]  S. A. El-Wakil,et al.  New exact solutions for a generalized variable coefficients 2D KdV equation , 2004 .

[6]  I. V. Barashenkov,et al.  Stability and evolution of the quiescent and travelling solitonic bubbles , 1993 .

[7]  James P. Gordon,et al.  Experimental observation of picosecond pulse narrowing and solitons in optical fibers (A) , 1980 .

[8]  Mingliang Wang SOLITARY WAVE SOLUTIONS FOR VARIANT BOUSSINESQ EQUATIONS , 1995 .

[9]  Khaled A. Gepreel,et al.  Group Analysis and Modified Extended Tanh-function to Find the Invariant Solutions and Soliton Solutions for Nonlinear Euler Equations , 2004 .

[10]  Sen Yang,et al.  The periodic wave solutions for the (3+1)-dimensional Klein-Gordon-Schrodinger equations , 2005 .

[11]  Qi Wang,et al.  The extended Jacobi elliptic function method to solve a generalized Hirota–Satsuma coupled KdV equations , 2005 .

[12]  Engui Fan,et al.  Using symbolic computation to exactly solve a new coupled MKdV system , 2002 .

[13]  Fuding Xie,et al.  Exact travelling wave solutions for a class of nonlinear partial differential equations , 2004 .

[14]  S. L. Palacios,et al.  Black optical solitons for media with parabolic nonlinearity law in the presence of fourth order dispersion , 2000 .

[15]  Yingchao Xie Positonic solutions for Wick-type stochastic KdV equations☆ , 2004 .

[16]  Mingliang Wang,et al.  Periodic wave solutions to a coupled KdV equations with variable coefficients , 2003 .

[17]  E. Fan,et al.  Soliton solutions for a generalized Hirota–Satsuma coupled KdV equation and a coupled MKdV equation , 2001 .

[18]  Cheng-Lin Bai,et al.  GENERALIZED EXTENDED TANH-FUNCTION METHOD AND ITS APPLICATION , 2006 .

[19]  Robert Conte,et al.  Link between solitary waves and projective Riccati equations , 1992 .

[20]  Khaled A. Gepreel,et al.  On the solitary wave solutions for nonlinear Hirota–Satsuma coupled KdV of equations , 2004 .

[21]  Hongqing Zhang,et al.  New exact travelling wave solutions for the shallow long wave approximate equations , 2005, Appl. Math. Comput..

[22]  Xiangzheng Li,et al.  Extended F-expansion method and periodic wave solutions for the generalized Zakharov equations , 2005 .

[23]  Mingliang Wang,et al.  A new Bäcklund transformation and multi-soliton solutions to the KdV equation with general variable coefficients , 2001 .

[24]  Zhuosheng Lü,et al.  Symbolic computation in non-linear evolution equation: application to (3 + 1)-dimensional Kadomtsev–Petviashvili equation , 2005 .

[25]  W. Hong Modulational instability of optical waves in the high dispersive cubic–quintic nonlinear Schrödinger equation , 2002 .

[26]  Jian Zhang,et al.  A new complex line soliton for the two-dimensional KdV–Burgers equation , 2001 .

[27]  Qi Wang,et al.  Elliptic equation rational expansion method and new exact travelling solutions for Whitham-Broer-Kaup equations , 2005 .

[28]  Zuntao Fu,et al.  JACOBI ELLIPTIC FUNCTION EXPANSION METHOD AND PERIODIC WAVE SOLUTIONS OF NONLINEAR WAVE EQUATIONS , 2001 .

[29]  T. Davydova,et al.  Schrödinger ordinary solitons and chirped solitons: fourth-order dispersive effects and cubic-quintic nonlinearity , 2001 .

[30]  New families of exact soliton-like solutions and dromion solutions to the (2+1)-dimensional higher-order Broer–Kaup equations , 2005 .

[31]  Zhang Jin-liang,et al.  New applications of the homogeneous balance principle , 2003 .

[32]  Zhang Jin-liang,et al.  The Periodic Wave Solutions for Two Nonlinear Evolution Equations , 2003 .

[33]  Yingchao Xie Exact solutions of the Wick-type stochastic Kadomtsev–Petviashvili equations , 2004 .

[34]  C. Zheng,et al.  Solitons with fission and fusion behaviors in a variable coefficient Broer–Kaup system , 2005 .

[35]  Zhenya Yan,et al.  Generalized method and its application in the higher-order nonlinear Schrodinger equation in nonlinear optical fibres , 2003 .

[36]  Hong-qing Zhang,et al.  A generalized F-expansion method to find abundant families of Jacobi Elliptic Function solutions of the (2+1)-dimensional Nizhnik–Novikov–Veselov equation , 2006 .

[37]  Zhuosheng Lü,et al.  New exact solitary-wave special solutions for the nonlinear dispersive K(m, n) equations , 2006 .

[38]  S. Tanev,et al.  Solitary wave propagation and bistability in the normal dispersion region of highly nonlinear optical fibres and waveguides , 1997 .

[39]  Mingliang Wang,et al.  Exact solutions to the double Sine-Gordon equation , 2006 .

[40]  Li Zhi-Bin,et al.  An Automated Jacobi Elliptic Function Method for Finding Periodic Wave Solutions to Nonlinear Evolution Equations , 2002 .

[41]  Η. A. Abdusalam,et al.  On an Improved Complex Tanh-function Method , 2005 .

[42]  Yueming Wang,et al.  The periodic wave solutions for the generalized Nizhnik-Novikov-Veselov equation , 2003 .

[43]  Μ. F. El-Sabbagh,et al.  New Exact Solutions for (3+1)-Dimensional Kadomtsev- Petviashvili Equation and Generalized (2+1)-Dimensional Boussinesq Equation , 2005 .