Quantification of 5-HT1A receptors in human brain using p-MPPF kinetic modelling and PET
暂无分享,去创建一个
Serge Goldman | Philippe Damhaut | David Wikler | Claude Veraart | Sandra M. Sanabria-Bohórquez | S. Sanabria-Bohórquez | C. Veraart | S. Goldman | D. Wikler | P. Damhaut | F. Biver | Francoise Biver
[1] Richard S. J. Frackowiak,et al. Cerebral blood flow, blood volume and oxygen utilization. Normal values and effect of age. , 1990, Brain : a journal of neurology.
[2] C. Cobelli,et al. Parameter and structural identifiability concepts and ambiguities: a critical review and analysis. , 1980, The American journal of physiology.
[3] H. Kung,et al. p‐[18F]‐MPPF: A potential radioligand for PET studies of 5‐HT1A receptors in humans , 1997, Synapse.
[4] A. Coppens,et al. Mediman: an object oriented programming approach for medical image analysis , 1992 .
[5] C. Degueldre,et al. [(18)F]p-MPPF: aA radiolabeled antagonist for the study of 5-HT(1A) receptors with PET. , 2000, Nuclear medicine and biology.
[6] William H. Press,et al. The Art of Scientific Computing Second Edition , 1998 .
[7] S. Peroutka. Serotonin Receptor Subtypes , 1995 .
[8] J Delforge,et al. Experimental design optimisation: theory and application to estimation of receptor model parameters using dynamic positron emission tomography. , 1989, Physics in medicine and biology.
[9] M Slifstein,et al. Derivation of [(11)C]WAY-100635 binding parameters with reference tissue models: effect of violations of model assumptions. , 2000, Nuclear medicine and biology.
[10] D Comar,et al. High-yield radiosynthesis and preliminary in vivo evaluation of p-[18F]MPPF, a fluoro analog of WAY-100635. , 1998, Nuclear medicine and biology.
[11] R N Gunn,et al. Quantitative analysis of [carbonyl-(11)C]WAY-100635 PET studies. , 2000, Nuclear medicine and biology.
[12] J. Delforge,et al. Identifiability analysis and parameter identification of an in vivo ligand-receptor model from PET data , 1990, IEEE Transactions on Biomedical Engineering.
[13] D. Le Bars,et al. In vivo characterization of p‐[18F]MPPF, a fluoro analog of WAY‐100635 for visualization of 5‐HT1a receptors , 2000, Synapse.
[14] R E Carson,et al. Assessment of Dynamic Neurotransmitter Changes with Bolus or Infusion Delivery of Neuroreceptor Ligands , 1998, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.
[15] A. Lammertsma,et al. Simplified Reference Tissue Model for PET Receptor Studies , 1996, NeuroImage.
[16] H. Kung,et al. Synthesis and evaluation of 4-(2'-methoxyphenyl)-1-[2'-[N-(2"-pyridinyl)-p- iodobenzamido]ethyl]piperazine (p-MPPI): a new iodinated 5-HT1A ligand. , 1994, Journal of medicinal chemistry.
[17] J. Passchier,et al. Quantitative imaging of 5-HT(1A) receptor binding in healthy volunteers with [(18)f]p-MPPF. , 2000, Nuclear medicine and biology.
[18] Vincent J. Cunningham,et al. Parametric Imaging of Ligand-Receptor Binding in PET Using a Simplified Reference Region Model , 1997, NeuroImage.
[19] D Comar,et al. Tissue Distribution, Autoradiography, and Metabolism of 4‐(2′‐Methoxyphenyl)‐1‐[2′ ‐[N‐2″‐Pyridinyl)‐p‐[18F]Fluorobenzamido]ethyl]piperazine (p‐[18F]MPPF), a New Serotonin 5‐HT1A Antagonist for Positron Emission Tomography , 2000, Journal of neurochemistry.
[20] P R Saxena,et al. Serotonin receptors: subtypes, functional responses and therapeutic relevance. , 1995, Pharmacology & therapeutics.