Measures of Possibility and Fuzzy Sets

The material in this book is based on a nontraditional approach to the imprecise and the uncertain. The basic concept is the measure of possibility. The object of this introduction is to provide motivation and context, to define measures of possibility, and to present basic notions necessary for understanding the later chapters. It appeals considerably to results contained in the authors’ theses [3, 24], among other references.

[1]  D. Dubois,et al.  A set-theoretic view of belief functions: Logical operations and approximations by fuzzy sets , 1986 .

[2]  Settimo Termini,et al.  A Definition of a Nonprobabilistic Entropy in the Setting of Fuzzy Sets Theory , 1972, Inf. Control..

[3]  E. Klement Construction of Fuzzy σ-algebras using triangular norms , 1982 .

[4]  Ronald R. Yager Fuzzy set and possibility theory : recent developments , 1982 .

[5]  M. Puri,et al.  A possibility measure is not a fuzzy measure , 1982 .

[6]  Lotfi A. Zadeh,et al.  The concept of a linguistic variable and its application to approximate reasoning-III , 1975, Inf. Sci..

[7]  Didier Dubois,et al.  Modèles mathématiques de l'imprécis et de l'incertain en vue d'applications aux techniques d'aide à la décision , 1983 .

[8]  T. Pavlidis,et al.  Fuzzy sets and their applications to cognitive and decision processes , 1977 .

[9]  L. J. Savage,et al.  The Foundations of Statistics , 1955 .

[10]  J. Goguen L-fuzzy sets , 1967 .

[11]  Erich Peter Klement,et al.  Characterization of finite fuzzy measures using Markoff-kernels , 1980 .

[12]  S. Gottwald Set theory for fuzzy sets of higher level , 1979 .

[13]  Arnold Kaufmann Éléments théoriques de base , 1973 .

[14]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[15]  Lotfi A. Zadeh,et al.  Similarity relations and fuzzy orderings , 1971, Inf. Sci..

[16]  R. Yager MEASURING TRANQUILITY AND ANXIETY IN DECISION MAKING: AN APPLICATION OF FUZZY SETS , 1982 .

[17]  L. Zadeh Probability measures of Fuzzy events , 1968 .

[18]  M. Gupta,et al.  FUZZY INFORMATION AND DECISION PROCESSES , 1981 .

[19]  D. Dubois,et al.  Unfair coins and necessity measures: Towards a possibilistic interpretation of histograms , 1983 .

[20]  Vijay K. Rohatgi,et al.  Advances in Fuzzy Set Theory and Applications , 1980 .

[21]  Didier Dubois,et al.  Operations in a Fuzzy-Valued Logic , 1979, Inf. Control..

[22]  Jaap Van Brakel,et al.  Foundations of measurement , 1983 .

[23]  Lotfi A. Zadeh,et al.  Quantitative fuzzy semantics , 1971, Inf. Sci..

[24]  D. Dubois,et al.  Towards fuzzy differential calculus part 2: Integration on fuzzy intervals , 1982 .

[25]  Joseph A. Goguen,et al.  Concept Representation in Natural and Artificial Languages: Axioms, Extensions and Applications for Fuzzy Sets , 1974, Int. J. Man Mach. Stud..

[26]  Didier Dubois,et al.  Fuzzy sets and systems ' . Theory and applications , 2007 .

[27]  H. Zimmermann,et al.  Decisions and evaluations by hierarchical aggregation of information , 1983 .

[28]  Masaharu Mizumoto,et al.  Some Properties of Fuzzy Sets of Type 2 , 1976, Inf. Control..

[29]  菅野 道夫,et al.  Theory of fuzzy integrals and its applications , 1975 .

[30]  Paul P. Wang,et al.  Fuzzy sets : theory and applications to policy analysis and information systems , 1981 .

[31]  Hung T. Nguyen,et al.  Some mathematical tools for linguistic probabilities , 1977, 1977 IEEE Conference on Decision and Control including the 16th Symposium on Adaptive Processes and A Special Symposium on Fuzzy Set Theory and Applications.

[32]  G. Klir,et al.  MEASURES OF UNCERTAINTY AND INFORMATION BASED ON POSSIBILITY DISTRIBUTIONS , 1982 .

[33]  D. Dubois,et al.  Fuzzy sets and statistical data , 1986 .

[34]  Didier Dubois,et al.  New Results about Properties and Semantics of Fuzzy Set-Theoretic Operators , 1980 .