Multiscale Molecular Modelling of ATP‐Fueled Supramolecular Polymerisation and Depolymerisation**

Fuel-regulated self-assembly is a key principle by which Nature creates spatiotemporally controlled materials and dynamic molecular systems that are in continuous communication (molecular exchange) with the external environment. Designing artificial materials that self-assemble and disassemble via conversion/consumption of a chemical fuel is a grand challenge in supramolecular chemistry, which requires a profound knowledge of the factors governing these complex systems. Here we focus on recently reported metal-coordinated monomers that polymerise in the presence of ATP and depolymerise upon ATP hydrolysis, exploring their fuel-regulated self-assembly/disassembly via multiscale molecular modelling. We use all-atom simulations to assess the role of ATP in stabilising these monomers in assemblies, and we then build on a minimalistic model to investigate their fuel-driven polymerization and depolymerization on a higher scale. In this way, we elucidate general aspects of fuel-regulated self-assembly that are important toward the rational design of new types of bioinspired materials.

[1]  L. Pesce,et al.  Self-assembled poly-catenanes from supramolecular toroidal building blocks , 2020, Nature.

[2]  Subi J. George,et al.  ATP-Driven Synthetic Supramolecular Assemblies: From ATP as a Template to Fuel. , 2020, Angewandte Chemie.

[3]  Sarit S. Agasti,et al.  Cooperative Supramolecular Block Copolymerization for the Synthesis of Functional Axial Organic Heterostructures. , 2020, Journal of the American Chemical Society.

[4]  Subi J. George,et al.  Self-Sorted, Random and Block Supramolecular Co-polymers via Sequence Controlled, Multicomponent Self-Assembly. , 2020, Journal of the American Chemical Society.

[5]  Jakub Rydzewski,et al.  Promoting transparency and reproducibility in enhanced molecular simulations , 2019, Nature Methods.

[6]  G. Pavan,et al.  How Defects Control the Out-of-Equilibrium Dissipative Evolution of a Supramolecular Tubule. , 2019, ACS nano.

[7]  G. Pavan,et al.  A Block Supramolecular Polymer and Its Kinetically Enhanced Stability. , 2018, Journal of the American Chemical Society.

[8]  L. Albertazzi,et al.  From isodesmic to highly cooperative: reverting the supramolecular polymerization mechanism in water by fine monomer design. , 2018, Chemical communications.

[9]  Karteek K. Bejagam,et al.  Biomimetic temporal self-assembly via fuel-driven controlled supramolecular polymerization , 2018, Nature Communications.

[10]  K. Merz,et al.  Extended Zinc AMBER Force Field (EZAFF). , 2018, Journal of chemical theory and computation.

[11]  Ankit Jain,et al.  Adenosine-Phosphate-Fueled, Temporally Programmed Supramolecular Polymers with Multiple Transient States. , 2017, Journal of the American Chemical Society.

[12]  G. Pavan,et al.  Effect of Concentration on the Supramolecular Polymerization Mechanism via Implicit-Solvent Coarse-Grained Simulations of Water-Soluble 1,3,5-Benzenetricarboxamide. , 2017, The journal of physical chemistry letters.

[13]  M. Salvalaglio,et al.  Into the Dynamics of a Supramolecular Polymer at Submolecular Resolution , 2017, Nature Communications.

[14]  Alessandro Sorrenti,et al.  Non-equilibrium steady states in supramolecular polymerization , 2017, Nature Communications.

[15]  G. Pavan,et al.  From Cooperative Self-Assembly to Water-Soluble Supramolecular Polymers Using Coarse-Grained Simulations. , 2017, ACS nano.

[16]  E. W. Meijer,et al.  Effect of H-Bonding on Order Amplification in the Growth of a Supramolecular Polymer in Water. , 2016, Journal of the American Chemical Society.

[17]  Piotr Nowak,et al.  Diversification of self-replicating molecules. , 2016, Nature chemistry.

[18]  Job Boekhoven,et al.  Transient assembly of active materials fueled by a chemical reaction , 2015, Science.

[19]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[20]  E. W. Meijer,et al.  Programmierbare supramolekulare Polymerisationen , 2015 .

[21]  Tom F A de Greef,et al.  Programmable Supramolecular Polymerizations. , 2015, Angewandte Chemie.

[22]  Masayuki Takeuchi,et al.  Mechanism of self-assembly process and seeded supramolecular polymerization of perylene bisimide organogelator. , 2015, Journal of the American Chemical Society.

[23]  E. W. Meijer,et al.  Consequences of chirality on the dynamics of a water-soluble supramolecular polymer , 2015, Nature Communications.

[24]  Tadashi Mori,et al.  A rational strategy for the realization of chain-growth supramolecular polymerization , 2015, Science.

[25]  David Beljonne,et al.  A dynamic supramolecular polymer with stimuli-responsive handedness for in situ probing of enzymatic ATP hydrolysis , 2014, Nature Communications.

[26]  Karteek K. Bejagam,et al.  Supramolecular polymerization of benzene-1,3,5-tricarboxamide: a molecular dynamics simulation study. , 2014, The journal of physical chemistry. B.

[27]  Masayuki Takeuchi,et al.  Living supramolecular polymerization realized through a biomimetic approach , 2014, Nature Chemistry.

[28]  Massimiliano Bonomi,et al.  PLUMED 2: New feathers for an old bird , 2013, Comput. Phys. Commun..

[29]  E. W. Meijer,et al.  Functional Supramolecular Polymers , 2012, Science.

[30]  Sandeep K. Reddy,et al.  Cooperativity in the stacking of benzene-1,3,5-tricarboxamide: The role of dispersion , 2011 .

[31]  George C Schatz,et al.  Atomistic molecular dynamics simulations of peptide amphiphile self-assembly into cylindrical nanofibers. , 2011, Journal of the American Chemical Society.

[32]  P. Hilbers,et al.  Understanding cooperativity in hydrogen-bond-induced supramolecular polymerization: a density functional theory study. , 2010, The journal of physical chemistry. B.

[33]  F. Chami,et al.  Molecular order in a chromonic liquid crystal: a molecular simulation study of the anionic azo dye sunset yellow. , 2010, Journal of the American Chemical Society.

[34]  Christopher A Waudby,et al.  Mechanosensitive Self-Replication Driven by Self-Organization , 2010, Science.

[35]  L. A. Lowery,et al.  The trip of the tip: understanding the growth cone machinery , 2009, Nature Reviews Molecular Cell Biology.

[36]  D. Tieleman,et al.  The MARTINI force field: coarse grained model for biomolecular simulations. , 2007, The journal of physical chemistry. B.

[37]  M. Parrinello,et al.  Canonical sampling through velocity rescaling. , 2007, The Journal of chemical physics.

[38]  P. Kollman,et al.  Automatic atom type and bond type perception in molecular mechanical calculations. , 2006, Journal of molecular graphics & modelling.

[39]  J. Lehn Dynamers: dynamic molecular and supramolecular polymers , 2005 .

[40]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[41]  Heather A. Carlson,et al.  Development of polyphosphate parameters for use with the AMBER force field , 2003, J. Comput. Chem..

[42]  K. Raymond,et al.  Supramolecular assembly dynamics , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[43]  D. ben-Avraham,et al.  Trafficking and signaling through the cytoskeleton: a specific mechanism. , 2000, Journal of cell science.

[44]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[45]  D. van der Spoel,et al.  GROMACS: A message-passing parallel molecular dynamics implementation , 1995 .

[46]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[47]  P. Kollman,et al.  A well-behaved electrostatic potential-based method using charge restraints for deriving atomic char , 1993 .

[48]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[49]  M. Kirschner,et al.  Dynamic instability of microtubule growth , 1984, Nature.

[50]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[51]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[52]  Matteo Mauro,et al.  Controlling and imaging biomimetic self-assembly. , 2016, Nature chemistry.

[53]  F. Oosawa,et al.  The cooperative nature of G-F transformation of actin. , 1962, Biochimica et biophysica acta.