Calculation of the threshold current of stripe‐geometry double‐heterostructure GaAs‐Ga1−xAlxAs lasers, including a self‐consistent treatment of the current‐temperature dependence

The threshold current density of a stripe‐geometry GaAs double‐heterostructure laser has been calculated taking into account the influence of the dynamical processes occurring along the junction plane. The calculation includes the effects of a temperature profile, current spreading, carrier diffusion and optical mode losses. The junction current density J, which causes heat generation, is assumed to be temperature dependent. The interdependence between them is taken into account in a self‐consistent way. The temperature effect is shown to be particularly important for lasers with narrow stripe widths (<20 μm).

[1]  J. Faires Numerical Analysis , 1981 .

[2]  J. Mendoza-Álvarez,et al.  Refractive index dependence on free carriers for GaAs , 1980 .

[3]  F. Nunes,et al.  Refractive‐index profile and resonant modes in GaAs lasers , 1979 .

[4]  J. Buus Detailed field model for DH stripe lasers , 1978 .

[5]  Won-Tien Tsang,et al.  The effects of lateral current spreading, carrier out‐diffusion, and optical mode losses on the threshold current density of GaAs‐AlχGa1−χAs stripe‐geometry DH lasers , 1978 .

[6]  T. Paoli,et al.  Waveguiding in a stripe-geometry junction laser , 1977, IEEE Journal of Quantum Electronics.

[7]  T. Paoli,et al.  A new technique for measuring the thermal impedance of junction lasers , 1975, IEEE Journal of Quantum Electronics.

[8]  W. Joyce,et al.  Thermal resistance of heterostructure lasers , 1975 .

[9]  B. W. Hakki,et al.  Carrier and gain spatial profiles in GaAs stripe geometry lasers , 1973 .

[10]  Kohroh Kobayashi,et al.  A GaAs-AlxGa1-xAs Double Heterostructure Planar Stripe Laser , 1973 .

[11]  F. R. Nash,et al.  Mode guidance parallel to the junction plane of double-heterostructure GaAs lasers , 1973 .

[12]  B. Miller,et al.  Variation of minority-carrier diffusion length with carrier concentration in GaAs liquid-phase epitaxial layers , 1973 .

[13]  H. Schade,et al.  EFFICIENT PHOTOEMISSION FROM Ge‐DOPED GaAs GROWN BY LIQUID‐PHASE EPITAXY , 1971 .

[14]  W. B. Joyce,et al.  Steady‐State Junction‐Current Distributions in Thin Resistive Films on Semiconductor Junctions (Solutions of ▿2v = ±ev) , 1970 .

[15]  D. F. Nelson,et al.  Electromagnetic Modes of Anisotropic Dielectric Waveguides at p‐n Junctions , 1967 .

[16]  H. Casey Heterostructure lasers , 1978 .

[17]  B. Hakki GaAs double heterostructure lasing behavior along the junction plane , 1975 .

[18]  L. D’asaro Advances in GaAs junction lasers with stripe geometry , 1973 .

[19]  F. Rosztoczy,et al.  Distribution Coefficient of Germanium in Gallium Arsenide Crystals Grown from Gallium Solutions , 1971 .