First-principles molten salt phase diagrams through thermodynamic integration.

Precise prediction of phase diagrams in molecular dynamics simulations is challenging due to the simultaneous need for long time and large length scales and accurate interatomic potentials. We show that thermodynamic integration from low-cost force fields to neural network potentials trained using density-functional theory (DFT) enables rapid first-principles prediction of the solid-liquid phase boundary in the model salt NaCl. We use this technique to compare the accuracy of several DFT exchange-correlation functionals for predicting the NaCl phase boundary and find that the inclusion of dispersion interactions is critical to obtain good agreement with experiment. Importantly, our approach introduces a method to predict solid-liquid phase boundaries for any material at an ab initio level of accuracy, with the majority of the computational cost at the level of classical potentials.

[1]  Nathan P. Walter,et al.  Comparative Studies of the Structural and Transport Properties of Molten Salt FLiNaK Using the Machine-Learned Neural Network and Reparametrized Classical Forcefields. , 2021, The journal of physical chemistry. B.

[2]  Wenshuo Liang,et al.  Theoretical prediction on the local structure and transport properties of molten alkali chlorides by deep potentials , 2021 .

[3]  C. Margulis,et al.  Unraveling Local Structure of Molten Salts via X-ray Scattering, Raman Spectroscopy, and Ab Initio Molecular Dynamics. , 2021, The journal of physical chemistry. B.

[4]  E. Kaxiras,et al.  Development of robust neural-network interatomic potential for molten salt , 2021 .

[5]  Weilong Wang,et al.  Thermal and Transport Properties of Molten Chloride Salts with Polarization Effect on Microstructure , 2021, Energies.

[6]  Wenshuo Liang,et al.  Machine-Learning-Driven Simulations on Microstructure and Thermophysical Properties of MgCl2-KCl Eutectic. , 2021, ACS applied materials & interfaces.

[7]  Lili Guo,et al.  Powerful predictability of FPMD simulations for the phase transition behavior of NaCl-MgCl2 eutectic salt , 2020 .

[8]  Ryan S. DeFever,et al.  Melting points of alkali chlorides evaluated for a polarizable and non-polarizable model. , 2020, The Journal of chemical physics.

[9]  Ryosuke Jinnouchi,et al.  Making free-energy calculations routine: Combining first principles with machine learning , 2020 .

[10]  A. Nakano,et al.  Thermodynamic integration by neural network potentials based on first-principles dynamic calculations , 2019 .

[11]  A. Oganov,et al.  Phase diagram of uranium from ab initio calculations and machine learning , 2019, Physical Review B.

[12]  Seungwu Han,et al.  SIMPLE-NN: An efficient package for training and executing neural-network interatomic potentials , 2019, Comput. Phys. Commun..

[13]  Franco Pellegrini,et al.  PANNA: Properties from Artificial Neural Network Architectures , 2019, Comput. Phys. Commun..

[14]  Alyson Gamble,et al.  Ullmann’s Encyclopedia of Industrial Chemistry , 2019, The Charleston Advisor.

[15]  Ralf Drautz,et al.  Atomic cluster expansion for accurate and transferable interatomic potentials , 2019, Physical Review B.

[16]  Dongheon Lee,et al.  Toward Reliable and Transferable Machine Learning Potentials: Uniform Training by Overcoming Sampling Bias , 2018, The Journal of Physical Chemistry C.

[17]  E Weinan,et al.  DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics , 2017, Comput. Phys. Commun..

[18]  Kathleen A. Schwarz,et al.  JDFTx: Software for joint density-functional theory , 2017, SoftwareX.

[19]  J. Behler Perspective: Machine learning potentials for atomistic simulations. , 2016, The Journal of chemical physics.

[20]  Huili Zhang,et al.  Concentrated solar power plants: Review and design methodology , 2013 .

[21]  D. Vanderbilt,et al.  Pseudopotentials for high-throughput DFT calculations , 2013, 1305.5973.

[22]  R. Kondor,et al.  On representing chemical environments , 2012, 1209.3140.

[23]  E. Sanz,et al.  Calculation of the melting point of alkali halides by means of computer simulations. , 2012, The Journal of chemical physics.

[24]  K. Müller,et al.  Fast and accurate modeling of molecular atomization energies with machine learning. , 2011, Physical review letters.

[25]  J. Behler Atom-centered symmetry functions for constructing high-dimensional neural network potentials. , 2011, The Journal of chemical physics.

[26]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[27]  R. Kondor,et al.  Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. , 2009, Physical review letters.

[28]  G. Scuseria,et al.  Restoring the density-gradient expansion for exchange in solids and surfaces. , 2007, Physical review letters.

[29]  C. Brun Molten salts and nuclear energy production , 2007 .

[30]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[31]  J. D. Gezelter,et al.  Is the Ewald summation still necessary? Pairwise alternatives to the accepted standard for long-range electrostatics. , 2006, The Journal of chemical physics.

[32]  D. Frenkel,et al.  Calculation of the melting point of NaCl by molecular simulation , 2003 .

[33]  Evert Jan Meijer,et al.  NOVEL PROCEDURE TO DETERMINE COEXISTENCE LINES BY COMPUTER SIMULATION. APPLICATION TO HARD-CORE YUKAWA MODEL FOR CHARGE-STABILIZED COLLOIDS , 1997 .

[34]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[35]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[36]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[37]  David A. Kofke,et al.  Gibbs-Duhem integration: a new method for direct evaluation of phase coexistence by molecular simulation , 1993 .

[38]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[39]  P. Steinhardt,et al.  Bond-orientational order in liquids and glasses , 1983 .

[40]  W. R. Grimes Molten-Salt Reactor Chemistry , 1970 .

[41]  L. Verlet Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules , 1967 .

[42]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[43]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[44]  A. D. Kirshenbaum,et al.  The density of liquid NaCl and KCl and an estimate of their critical constants together with those of the other alkali halides , 1962 .

[45]  B. Alder,et al.  Phase Transition for a Hard Sphere System , 1957 .

[46]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[47]  J. Kirkwood Statistical Mechanics of Fluid Mixtures , 1935 .

[48]  Aleš Kroupa,et al.  Modelling of phase diagrams and thermodynamic properties using Calphad method – Development of thermodynamic databases , 2013 .

[49]  A. Pohorille,et al.  Free energy calculations : theory and applications in chemistry and biology , 2007 .

[50]  David M. Eike,et al.  Toward a robust and general molecular simulation method for computing solid-liquid coexistence. , 2005, The Journal of chemical physics.

[51]  D. Frenkel,et al.  Understanding molecular simulation : from algorithms to applications. 2nd ed. , 2002 .

[52]  M. P. Tosi,et al.  Ionic sizes and born repulsive parameters in the NaCl-type alkali halides—I: The Huggins-Mayer and Pauling forms , 1964 .

[53]  R. Clausius,et al.  Ueber die bewegende Kraft der Wärme und die Gesetze, welche sich daraus für die Wärmelehre selbst ableiten lassen , 1850 .